Understanding the electronic properties of single- and double-stranded DNA

Abstract.

Understanding the charge transfer mechanism through deoxyribonucleic acid (DNA) molecules remains a challenge for numerous theoretical and experimental studies in order to be utilized in nanoelectronic devices. Various methods have attempted to investigate the conductivity of double-stranded (ds-) and single-stranded DNA (ssDNA) molecules. However, different electronic behaviors of these molecules are not clearly understood due to the complexity and lack of accuracy of the methods applied in these studies. In this work however, we demonstrated an electronic method to study the electrical behavior of synthetic ssDNA or dsDNA integrated within printed circuit board (PCB)-based metal (gold)-semiconductor (DNA) Schottky junctions. The results obtained in this work are in agreement with other studies reporting dsDNA as having higher conductivity than ssDNA as observed by us in the range of 4-6μA for the former and 2-3μA for the latter at an applied bias of 3V. Selected solid-state parameters such as turn-on voltage, series resistance, shunt resistance, ideality factor, and saturation current were also calculated for the specifically designed ss- and dsDNA sequences using the thermionic emission model. The results also showed that the highest conductance was observed for dsDNA with guanine and cytosine base pairs, while the lowest conductance was for ssDNA with adenine and thymine bases. We believe the results of this preliminary work involving the gold-DNA Schottky junction may allow the interrogation of DNA charge transfer mechanisms and contribute to better understanding its elusive electronic properties.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, K. Roberts, Molecular Cell Biology (Garland Science, New York, 2008) p. 3

  2. 2

    V. Bhalla, R.P. Bajpai, L.M. Bharadwaj, EMBO Rep. 4, 442 (2003)

    Article  Google Scholar 

  3. 3

    D.D. Eley, D.I. Spivey, Trans. Faraday Soc. 58, 411 (1962)

    Article  Google Scholar 

  4. 4

    D. Porath, N. Lapidot, J. Gomez-Herrero, Charge transport in DNA-based devices, in Introducing Molecular Electronics (Springer, Berlin, Heidelberg, 2006) pp. 411--444

  5. 5

    A. Csáki, G. Maubach, D. Born, J. Reichert, W. Fritzsche, Single Mol. 3, 275 (2002)

    ADS  Article  Google Scholar 

  6. 6

    D. Porath, A. Bezryadin, S. De Vries, C. Dekker, Nature 403, 635 (2000)

    ADS  Article  Google Scholar 

  7. 7

    H.W. Fink, C. Schönenberger, Nature 398, 407 (1999)

    ADS  Article  Google Scholar 

  8. 8

    J.K. Barton, E.D. Olmon, P.A. Sontz, Coord. Chem. Rev. 255, 619 (2011)

    Article  Google Scholar 

  9. 9

    K.I. Dedachi, T. Natsume, T. Nakatsu, S. Tanaka, Y. Ishikawa, N. Kurita, Chem. Phys. Lett. 436, 244 (2007)

    ADS  Article  Google Scholar 

  10. 10

    I. Kratochvílová, K. Král, M. Bunček, A. Víšková, S. Nešpurek, A. Kochalska, B. Schneider, Biophys. Chem. 138, 3 (2008)

    Article  Google Scholar 

  11. 11

    H. van Zalinge, D.J. Schiffrin, A.D. Bates, W. Haiss, J. Ulstrup, R.J. Nichols, ChemPhysChem 7, 94 (2006)

    Article  Google Scholar 

  12. 12

    M.M. Ramos, H.M. Correia, Soft Matter 7, 10091 (2011)

    ADS  Article  Google Scholar 

  13. 13

    H. Cohen, C. Nogues, D. Ullien, S. Daube, R. Naaman, D. Porath, Faraday Discuss. 131, 367 (2006)

    ADS  Article  Google Scholar 

  14. 14

    K. Wang, J. Funct. Biomater. 9, 8 (2018)

    Article  Google Scholar 

  15. 15

    D. Mandler, Anal. Bioanal. Chem. 398, 2771 (2010)

    Article  Google Scholar 

  16. 16

    V. Periasamy, N. Rizan, H.M.J. Al-Ta'ii, Y.S. Tan, H.A. Tajuddin, M. Iwamoto, Sci. Rep. 6, 29879 (2016)

    ADS  Article  Google Scholar 

  17. 17

    N. Rizan, C.Y. Yew, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S.M. Phang, Sci. Rep. 8, 896 (2018)

    ADS  Article  Google Scholar 

  18. 18

    S.Z. Azmi, V. Vello, N. Rizan, J. Krishnasamy, S. Talebi, P. Gunaselvam, V. Periasamy, Appl. Phys. A 124, 559 (2018)

    ADS  Article  Google Scholar 

  19. 19

    D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, NY, 2012)

  20. 20

    R.A. Marcus, N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg. 811, 265 (1985)

    Article  Google Scholar 

  21. 21

    R. Venkatramani, S. Keinan, A. Balaeff, D.N. Beratan, Coord. Chem. Rev. 255, 635 (2011)

    Article  Google Scholar 

  22. 22

    J.M. Artes, M. López-Martínez, I. Díez-Perez, F. Sanz, P. Gorostiza, Electrochim. Acta 140, 83 (2014)

    Article  Google Scholar 

  23. 23

    E. Maciá, F. Triozon, S. Roche, Phys. Rev. B 71, 113106 (2005)

    ADS  Article  Google Scholar 

  24. 24

    N. Koch (Editor), Supramolecular Materials for Opto-Electronics (Royal Society of Chemistry, 2014) pp. 18--20

  25. 25

    J. Olofsson, S. Larsson, J. Phys. Chem. B 105, 10398 (2001)

    Article  Google Scholar 

  26. 26

    D. Klotsa, R.A. Römer, M.S. Turner, Biophys. J. 89, 2187 (2005)

    Article  Google Scholar 

  27. 27

    M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M.E. Michel-Beyerle, J. Jortner, Proc. Natl. Acad. Sci. U.S.A. 96, 11713 (1999)

    ADS  Article  Google Scholar 

  28. 28

    M.W. Grinstaff, Angew. Chem. Int. Ed. 38, 3629 (1999)

    Article  Google Scholar 

  29. 29

    D.B. Hall, R.E. Holmlin, J.K. Barton, Nature 382, 731 (1996)

    ADS  Article  Google Scholar 

  30. 30

    S. Delaney, J.K. Barton, J. Org. Chem. 68, 6475 (2003)

    Article  Google Scholar 

  31. 31

    B. Xu, P. Zhang, X. Li, N. Tao, Nano Letters 4, 1105 (2004)

    ADS  Article  Google Scholar 

  32. 32

    B. Giese, Acc. Chem. Res. 33, 631 (2000)

    Article  Google Scholar 

  33. 33

    R.N. Barnett, C.L. Cleveland, A. Joy, U. Landman, G.B. Schuster, Science 294, 567 (2001)

    ADS  Article  Google Scholar 

  34. 34

    G.B. Schuster (Editor), Long-range charge transfer in DNA I, Vol. 236 (Springer Science & Business Media, 2004)

  35. 35

    P. Chattopadhyay, J. Phys. D: Appl. Phys. 29, 823 (1996)

    ADS  Article  Google Scholar 

  36. 36

    N. Tuğluoğlu, S. Karadeniz, Curr. Appl. Phys. 12, 1529 (2012)

    ADS  Article  Google Scholar 

  37. 37

    F.E. Cimilli, M. Sağlam, H. Efeoğlu, A. Türüt, Physica B: Condens. Matter 404, 1558 (2009)

    ADS  Article  Google Scholar 

  38. 38

    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    ADS  Article  Google Scholar 

  39. 39

    S. Gholami, M. Khakbaz, Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5, 1285 (2011)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vengadesh Periasamy.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daraghma, S.M.A., Talebi, S. & Periasamy, V. Understanding the electronic properties of single- and double-stranded DNA. Eur. Phys. J. E 43, 40 (2020). https://doi.org/10.1140/epje/i2020-11965-8

Download citation

Keywords

  • Living systems: Biological Matter