Skip to main content
Log in

Surface swimmers, harnessing the interface to self-propel

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In the study of microscopic flows, self-propulsion has been particularly topical in recent years, with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing, micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel these microrobots, as demonstrated by recent experiments using the proximity of an interface, or the interface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates how forces at the interface can be used to generate locomotion. Surface swimmers ranging from the microscopic scale to typically the capillary length are covered. Two systems are then discussed in greater detail. The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming structures. Two previously studied configurations, triangular and collinear, are discussed and contrasted. A new interpretation for the triangular swimmer is presented. Then, the non-monotonic influence of surface tension and viscosity is evidenced in the collinear case. Finally, a new system is introduced. It is a magnetically powered, centimeter-sized piece that swims similarly to water striders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)

  2. G.I. Taylor, Proc. R. Soc. Lond. A 209, 447 (1951)

    Article  ADS  Google Scholar 

  3. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  4. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  5. C. Navier, Mem. Acad. R. Sci. (Paris) 6, 389 (1823)

    Google Scholar 

  6. G.G. Stokes, Trans. Cambridge Philos. Soc. 8, 287 (1845)

    Google Scholar 

  7. G.G. Stokes, Trans. Cambridge Philos. Soc. 9, 8 (1851)

    ADS  Google Scholar 

  8. O. Reynolds, Philos. Trans. R. Soc. 174, 935 (1884)

    ADS  Google Scholar 

  9. D. Klotsa, K.A. Baldwin, R.J.A. Hill, R.M. Bowley, M.R. Swift, Phys. Rev. Lett. 115, 248102 (2015)

    Article  ADS  Google Scholar 

  10. S. Alben, M. Shelley, Proc. Natl. Acad. Sci. U.S.A. 102, 11163 (2005)

    Article  ADS  Google Scholar 

  11. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    Article  ADS  Google Scholar 

  12. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)

    Article  ADS  Google Scholar 

  13. G. Grosjean, G. Lagubeau, A. Darras, M. Hubert, G. Lumay, N. Vandewalle, Sci. Rep. 5, 16035 (2015)

    Article  ADS  Google Scholar 

  14. R. Trouilloud, S.Y. Tony, A. Hosoi, E. Lauga, Phys. Rev. Lett. 101, 048102 (2008)

    Article  ADS  Google Scholar 

  15. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, J. Phys. Chem. B 112, 16525 (2008)

    Article  Google Scholar 

  16. F. Martinez-Pedrero, P. Tierno, Phys. Rev. Appl. 3, 051003 (2015)

    Article  ADS  Google Scholar 

  17. E. Lauga, Phys. Fluids 19, 061703 (2007)

    Article  ADS  Google Scholar 

  18. D.O. Pushkin, J.M. Yeomans, Phys. Rev. Lett. 111, 188101 (2013)

    Article  ADS  Google Scholar 

  19. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, Phys. Rev. Lett. 101, 218304 (2008)

    Article  ADS  Google Scholar 

  20. A. Farutin, S. Rafaï, D.K. Dysthe, A. Duperray, P. Peyla, C. Misbah, Phys. Rev. Lett. 111, 228102 (2013)

    Article  ADS  Google Scholar 

  21. R. Golestanian, A. Ajdari, Phys. Rev. E 77, 036308 (2008)

    Article  ADS  Google Scholar 

  22. R. Zargar, A. Najafi, M. Miri, Phys. Rev. E 80, 026308 (2009)

    Article  ADS  Google Scholar 

  23. K. Pickl, J. Götz, K. Iglberger, J. Pande, K. Mecke, A.S. Smith, U. Rüde, J. Comput. Sci. 3, 374 (2012)

    Article  Google Scholar 

  24. J. Pande, A.S. Smith, Soft Matter 11, 2364 (2015)

    Article  ADS  Google Scholar 

  25. J. Pande, L. Merchant, T. Krger, J. Harting, A.S. Smith, New J. Phys. 19, 053024 (2017)

    Article  ADS  Google Scholar 

  26. G. Lumay, N. Obara, F. Weyer, N. Vandewalle, Soft Matter 9, 2420 (2013)

    Article  ADS  Google Scholar 

  27. E. Lauga, EPL 86, 64001 (2009)

    Article  ADS  Google Scholar 

  28. T. Qiu, T.C. Lee, A.G. Mark, K.I. Morozov, R. Münster, O. Mierka, S. Turek, A.M. Leshansky, P. Fischer, Nat. Commun. 5, 5119 (2014)

    Article  ADS  Google Scholar 

  29. E. Lauga, D. Bartolo, Phys. Rev. E 78, 030901 (2008)

    Article  ADS  Google Scholar 

  30. P. Tierno, O. Güell, F. Sagués, R. Golestanian, I. Pagonabarraga, Phys. Rev. E 81, 011402 (2010)

    Article  ADS  Google Scholar 

  31. R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  32. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  33. M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)

    Article  Google Scholar 

  34. S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)

    Article  ADS  Google Scholar 

  35. H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)

    Article  ADS  Google Scholar 

  36. M. Pumera, Nanoscale 2, 1643 (2010)

    Article  ADS  Google Scholar 

  37. X. Wang, M. In, C. Blanc, M. Nobili, A. Stocco, Soft Matter 11, 7376 (2015)

    Article  ADS  Google Scholar 

  38. X. Wang, M. In, C. Blanc, A. Wurger, M. Nobili, A. Stocco, Langmuir 33, 13766 (2017)

    Article  Google Scholar 

  39. K. Dietrich, D. Renggli, M. Zanini, G. Volpe, I. Buttinoni, L. Isa, New J. Phys. 19, 065008 (2017)

    Article  ADS  Google Scholar 

  40. K. Dietrich, G. Volpe, M.N. Sulaiman, D. Renggli, I. Buttinoni, L. Isa, Phys. Rev. Lett. 120, 268004 (2018)

    Article  ADS  Google Scholar 

  41. P. Malgaretti, M. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)

    Article  ADS  Google Scholar 

  42. A. Domínguez, P. Malgaretti, M. Popescu, S. Dietrich, Soft Matter 12, 8398 (2016)

    Article  ADS  Google Scholar 

  43. A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)

    Article  ADS  Google Scholar 

  44. S. Nakata, M. Hata, Y.S. Ikura, E. Heisler, A. Awazu, H. Kitahata, H. Nishimori, J. Phys. Chem. C 117, 24490 (2013)

    Article  Google Scholar 

  45. Y. Karasawa, S. Oshima, T. Nomoto, T. Toyota, M. Fujinami, Chem. Lett. 43, 1002 (2014)

    Article  Google Scholar 

  46. T. Mitsumata, J.P. Gong, Y. Osada, Polym. Adv. Technol. 12, 136 (2001)

    Article  Google Scholar 

  47. N. Bassik, B.T. Abebe, D.H. Gracias, Langmuir 24, 12158 (2008)

    Article  Google Scholar 

  48. E. Bormashenko, Y. Bormashenko, R. Grynyov, H. Aharoni, G. Whyman, B.P. Binks, J. Phys. Chem. C 119, 9910 (2015)

    Article  Google Scholar 

  49. S. Nakata, S. Ichi Hiromatsu, Chem. Phys. Lett. 405, 39 (2005)

    Article  ADS  Google Scholar 

  50. Z. Izri, M.N. Van Der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 248302 (2014)

    Article  ADS  Google Scholar 

  51. D. Okawa, S.J. Pastine, A. Zettl, J.M. Fréchet, J. Am. Chem. Soc. 131, 5396 (2009)

    Article  Google Scholar 

  52. R.T. Mallea, A. Bolopion, J.C. Beugnot, P. Lambert, M. Gauthier, IEEE/ASME Trans. Mechatron. 22, 693 (2017)

    Article  Google Scholar 

  53. H. Ebata, M. Sano, Sci. Rep. 5, 8546 (2015)

    Article  ADS  Google Scholar 

  54. A. Snezhko, I.S. Aranson, W.K. Kwok, Phys. Rev. E 73, 041306 (2006)

    Article  ADS  Google Scholar 

  55. A. Snezhko, I.S. Aranson, Nat. Mater. 10, 698 (2011)

    Article  ADS  Google Scholar 

  56. G. Grosjean, M. Hubert, G. Lagubeau, N. Vandewalle, Phys. Rev. E 94, 021101 (2016)

    Article  ADS  Google Scholar 

  57. A.S. Basu, S.Y. Yee, Y.B. Gianchandani, Virtual components for droplet control using marangoni flows: size-selective filters, traps, channels, and pumps, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007) pp. 401--404

  58. Y. Couder, S. Protière, E. Fort, A. Boudaoud, Nature 437, 208 (2005)

    Article  ADS  Google Scholar 

  59. O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)

    Article  Google Scholar 

  60. M. Hubert, G. Grosjean, Y.E. Corbisier, G. Lumay, F. Weyer, N. Obara, N. Vandewalle, arXiv preprint arXiv:1310.3094 (2013)

  61. R. Chinomona, J. Lajeunesse, W.H. Mitchell, Y. Yao, S.E. Spagnolie, Soft Matter 11, 1828 (2015)

    Article  ADS  Google Scholar 

  62. G. Lagubeau, G. Grosjean, A. Darras, G. Lumay, M. Hubert, N. Vandewalle, Phys. Rev. E 93, 053117 (2016)

    Article  ADS  Google Scholar 

  63. G. Grosjean, M. Hubert, N. Vandewalle, Adv. Colloid Interface Sci. 255, 84 (2018)

    Article  Google Scholar 

  64. P.A. Kralchevsky, K. Nagayama, Langmuir 10, 23 (1994)

    Article  Google Scholar 

  65. D. Vella, L. Mahadevan, Am. J. Phys. 73, 817 (2005)

    Article  ADS  Google Scholar 

  66. D.L. Hu, B. Chan, J.W. Bush, Nature 424, 663 (2003)

    Article  ADS  Google Scholar 

  67. D.L. Hu, J.W. Bush, Nature 437, 733 (2005)

    Article  ADS  Google Scholar 

  68. S. Gart, D. Vella, S. Jung, Soft Matter 7, 2444 (2011)

    Article  ADS  Google Scholar 

  69. R. Suter, O. Rosenberg, S. Loeb, H. Wildman, J. Long, J. Exp. Biol. 200, 2523 (1997)

    Google Scholar 

  70. X.Q. Feng, X. Gao, Z. Wu, L. Jiang, Q.S. Zheng, Langmuir 23, 4892 (2007)

    Article  Google Scholar 

  71. J.W. Bush, D.L. Hu, M. Prakash, Adv. Insect Physiol. 34, 117 (2007)

    Article  Google Scholar 

  72. Y.S. Song, M. Sitti, IEEE Trans. Robot 23, 578 (2007)

    Article  Google Scholar 

  73. X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, Q. Pan, ACS Appl. Mater. Interfaces 3, 2630 (2011)

    Article  Google Scholar 

  74. G.K. Taylor, R.L. Nudds, A.L. Thomas, Nature 425, 707 (2003)

    Article  ADS  Google Scholar 

  75. C. Eloy, J. Fluids Struct. 30, 205 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grosjean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosjean, G., Hubert, M., Collard, Y. et al. Surface swimmers, harnessing the interface to self-propel. Eur. Phys. J. E 41, 137 (2018). https://doi.org/10.1140/epje/i2018-11747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11747-y

Keywords

Navigation