Speeding up Monte Carlo simulation of patchy hard cylinders

  • Alberto Giacomo Orellana
  • Emanuele Romani
  • Cristiano De Michele
Regular Article
  • 8 Downloads
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

The hard cylinder model decorated with attractive patches proved to be very useful recently in studying physical properties of several colloidal systems. Phase diagram, elastic constants and cholesteric properties obtained from computer simulations based on a simple hard cylinder model have been all successfully and quantitatively compared to experimental results. Key to these simulations is an efficient algorithm to check the overlap between hard cylinders. Here, we propose two algorithms to check the hard cylinder overlap and we assess their efficiency through a comparison with an existing method available in the literature and with the well-established algorithm for simulating hard spherocylinders. In addition, we discuss a couple of optimizations for performing computer simulations of patchy anisotropic particles and we estimate the speed-up which they can provide in the case of patchy hard cylinders.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    P. Teixeira, J. Tavares, Curr. Opin. Colloid Interface Sci. 30, 16 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Sciortino, E. Zaccarelli, Curr. Opin. Colloid Interface Sci. 30, 90 (2017)CrossRefGoogle Scholar
  3. 3.
    F. Sciortino, Collect. Czech. Chem. Commun. 75, 349 (2010)CrossRefGoogle Scholar
  4. 4.
    G.R. Yi, D.J. Pine, S. Sacanna, J. Phys: Condens. Matter 25, 193101 (2013)ADSGoogle Scholar
  5. 5.
    J.P.K. Doye, A.A. Louis, I.C. Lin, L.R. Allen, E.G. Noya, A.W. Wilber, H.C. Kok, R. Lyus, Phys. Chem. Chem. Phys. 9, 2197 (2007)CrossRefGoogle Scholar
  6. 6.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)ADSCrossRefGoogle Scholar
  7. 7.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  8. 8.
    D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    A. Khan, Curr. Opin. Colloid Interface Sci. 1, 614 (1996)CrossRefGoogle Scholar
  10. 10.
    P. van der Schoot, M. Cates, Langmuir 10, 670 (1994)CrossRefGoogle Scholar
  11. 11.
    D.M. Kuntz, L.M. Walker, Soft Matter 4, 286 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Jung, R. Mezzenga, Langmuir 26, 504 (2010)CrossRefGoogle Scholar
  13. 13.
    C.F. Lee, Phys. Rev. E 80, 031902 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ciferri, Liq. Cryst. 34, 693 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong, N. Boden, J. Am. Chem. Soc. 125, 9619 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G. Zanchetta, M. Nakata, M. Buscaglia, N.A. Clark, T. Bellini, J. Phys.: Condens. Matter 20, 494214 (2008)Google Scholar
  18. 18.
    G. Zanchetta, F. Giavazzi, M. Nakata, M. Buscaglia, R. Cerbino, N.A. Clark, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 107, 17497 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Robinson, Tetrahedron 13, 219 (1961)CrossRefGoogle Scholar
  20. 20.
    F. Livolant, A.M. Levelut, J. Doucet, J.P. Benoit, Nature 339, 724 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    K. Merchant, R.L. Rill, Biophys. J. 73, 3154 (1997)CrossRefGoogle Scholar
  22. 22.
    F. Tombolato, A. Ferrarini, J. Chem. Phys. 122, 054908 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M. Salamonczyk, J. Zhang, G. Portale, C. Zhu, E. Kentzinger, J.T. Gleeson, A. Jakli, C. De Michele, J.K.G. Dhont, S. Sprunt et al., Nat. Commun. 7, 13358 EP (2016)ADSCrossRefGoogle Scholar
  24. 24.
    F. Tombolato, A. Ferrarini, E. Grelet, Phys. Rev. Lett. 96, 258302 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    E. Barry, D. Beller, Z. Dogic, Soft Matter 5, 2563 (2009)Google Scholar
  26. 26.
    E. Grelet, S. Fraden, Phys. Rev. Lett. 90, 198302 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Tomar, M.M. Green, L.A. Day, J. Am. Chem. Soc. 129, 3367 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Lydon, J. Mater. Chem. 20, 10071 (2010)CrossRefGoogle Scholar
  29. 29.
    K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Science 329, 197 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Kouriabova, M. Betterton, M. Glaser, J. Mater. Chem. 20, 10366 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Lü, J. Kindt, J. Chem. Phys. 120, 10328 (2004)CrossRefGoogle Scholar
  35. 35.
    N. Ibarra-Avalos, A. Gil-Villegas, A. Martinez Richa, Mol. Simul. 33, 505 (2007)CrossRefGoogle Scholar
  36. 36.
    R. Blaak, D. Frenkel, B.M. Mulder, J. Chem. Phys. 110, 11652 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    H.E. Salzer, Math. Comput. 14, 279 (1960)MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edition (National Bureau of Standards, 1964)Google Scholar
  39. 39.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd edition (Cambridge University Press, 2007)Google Scholar
  40. 40.
    N. Flocke, ACM Trans. Math. Softw. 41, 30 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Strobach, internal technical report (AST-Consulting Inc., 2015)  https://doi.org/10.13140/2.1.3955.7440
  42. 42.
    P. Strobach, J. Comput. Appl. Math. 234, 3007 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 3rd edition (Clarendon Press, Oxford, 1991)Google Scholar
  44. 44.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, 1st edition (Academic Press, 2002)Google Scholar
  45. 45.
    C. De Michele, Comput. Phys. Commun. 182, 1846 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    C. De Michele, J. Comput. Phys. 229, 3276 (2010)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    M.G. Coutinho, Dynamic Simulations of Multibody Systems, 1st edition (Springer-Verlag New York, 2001)Google Scholar
  48. 48.
    S.C. McGrother, D.C. Williamson, G. Jackson, J. Chem. Phys. 104, 6755 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    P. Bolhuis, D. Frenkel, J. Chem. Phys. 106, 666 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    J.A.C. Veerman, D. Frenkel, Phys. Rev. A 43, 4334 (1991)ADSCrossRefGoogle Scholar
  51. 51.
    M.P. Allen, G.T. Evans, D. Frenkel, B.M. Mulder, Hard Convex Body Fluids (John Wiley & Sons, Inc., 1993) pp. 1--166Google Scholar
  52. 52.
    C. Vega, S. Lago, Comput. Chem. 18, 55 (1994)CrossRefGoogle Scholar
  53. 53.
    S. Zhou, Y.A. Nastishin, M.M. Omelchenko, L. Tortora, V.G. Nazarenko, O.P. Boiko, T. Ostapenko, T. Hu, C.C. Almasan, S.N. Sprunt et al., Phys. Rev. Lett. 109, 037801 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    S. Zhou, K. Neupane, Y.A. Nastishin, A.R. Baldwin, S.V. Shiyanovskii, O.D. Lavrentovich, S. Sprunt, Soft Matter 10, 6571 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    S. Zhou, A.J. Cervenka, O.D. Lavrentovich, Phys. Rev. E 90, 042505 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    V.R. Horowitz, L.A. Janowitz, A.L. Modic, P.A. Heiney, P.J. Collings, Phys. Rev. E 72, 041710 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 72, 041711 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    D.J. Edwards, J.W. Jones, O. Lozman, A.P. Ormerod, M. Sintyureva, G.J.T. Tiddy, J. Phys. Chem. B 112, 14628 (2008)CrossRefGoogle Scholar
  59. 59.
    F. Chami, M.R. Wilson, J. Am. Chem. Soc. 132, 7794 (2010)CrossRefGoogle Scholar
  60. 60.
    H.S. Park, S.W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, O.D. Lavrentovich, J. Phys. Chem. B 112, 16307 (2008)CrossRefGoogle Scholar
  61. 61.
    M.P. Renshaw, I.J. Day, J. Phys. Chem. B 114, 10032 (2010)CrossRefGoogle Scholar
  62. 62.
    L. Joshi, S.W. Kang, D.M. Agra-Kooijman, S. Kumar, Phys. Rev. E 80, 041703 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    H. Docherty, A. Galindo, Mol. Phys. 104, 3551 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    G. Jiménez, S. Santillán, C. Avendaño, M. Castro, A. Gil-Villegas, Oil Gas Sci. Technol. -- Rev. IFP Energ. Nouv. 63, 329 (2008)CrossRefGoogle Scholar
  65. 65.
    E.G. Gilbert, D.W. Johnson, S.S. Keerthi, IEEE J. Robot. Autom. 4, 193 (1988)CrossRefGoogle Scholar
  66. 66.
    M. Montanari, N. Petrinic, E. Barbieri, ACM Trans. Graph. 36, 30 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Giacomo Orellana
    • 1
  • Emanuele Romani
    • 1
  • Cristiano De Michele
    • 1
  1. 1.Dipartimento di Fisica“Sapienza” Università di RomaRomaItaly

Personalised recommendations