Macroscopic behavior of polar nematic gels and elastomers

Open Access
Regular Article
  • 270 Downloads

Abstract.

We present the derivation of the macroscopic equations for uniaxial polar nematic gels and elastomers. We include the strain field as well as relative rotations as independent dynamic macroscopic degrees of freedom. As a consequence, special emphasis is laid on possible static and dynamic cross-couplings between these macroscopic degrees of freedom associated with the network, and the other macroscopic degrees of freedom including reorientations of the macroscopic polarization. In particular, we find static and dissipative dynamic cross-couplings between strain fields and relative rotations on one hand and the macroscopic polarization on the other that allow for new possibilities to manipulate polar nematics. To give one example each for the effects of a static and a dissipative cross-coupling: we find that a static electric field applied perpendicularly to the polar preferred direction leads to relative rotations while dynamically relative rotations can lead to transverse electric currents. In addition to a permanent network, we also consider the effect of a transient network, which is particularly important for the case of gels, melts and concentrated polymer solutions. A section on the influence of macroscopic chirality is included as well.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    H. Hsiung, Th. Rasing, Y.R. Shen, F.P. Shvartsman, I.R. Cabrera, V.A. Krongauz, J. Chem. Phys. 87, 3127 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    H. Zimmermann, R. Poupko, Z. Luz, J. Billard, Z. Naturforsch. A 40, 149 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    H. Pleiner, H.R. Brand, Europhys. Lett. 9, 243 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    H.R. Brand, P.E. Cladis, H. Pleiner, Macromolecules 25, 7223 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 6, 1231 (1996)CrossRefGoogle Scholar
  6. 6.
    D.R. Link, G. Natale, R. Shao, J.E. McLennan, N.A. Clark, E. Körblova, D.M. Walba, Science 278, 1924 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    H.R. Brand, P.E. Cladis, H. Pleiner, Eur. Phys. J. B 6, 347 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    H.R. Brand, P.E. Cladis, H. Pleiner, Eur. Phys. J. B 31, 147 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Pelzl, S. Diele, W. Weissflog, Adv. Mater. 11, 707 (1999)CrossRefGoogle Scholar
  10. 10.
    T. Niori, J. Yamamoto, H. Yokoyama, Mol. Cryst. Liq. Cryst. 409, 475 (2004)CrossRefGoogle Scholar
  11. 11.
    D. Shen, S. Diele, G. Pelzl, I. Wirth, C. Tschierske, J. Mater. Chem. 9, 661 (1999)CrossRefGoogle Scholar
  12. 12.
    W. Weissflog, H. Nadasi, U. Dunemann, G. Pelzl, S. Diele, A. Eremin, H. Kresse, J. Mater. Chem. 11, 2748 (2001)CrossRefGoogle Scholar
  13. 13.
    G. Pelzl, A. Eremin, S. Diele, H. Kresse, W. Weissflog, J. Mater. Chem. 12, 2591 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Hird, Y. Raoul, J.W. Goodby, H.F. Gleeson, Ferroelectrics 309, 95 (2004)CrossRefGoogle Scholar
  15. 15.
    H.R. Brand, P.E. Cladis, H. Pleiner, Int. J. Eng. Sci. 38, 1099 (2000)CrossRefGoogle Scholar
  16. 16.
    C.-C. Yen, M. Tokita, B. Park, H. Takezoe, J. Watanabe, Macromolecules 39, 1313 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Koike, C.-C. Yen, L. Yuqing, H. Tsuchiya, M. Tokita, S. Kawauchi, H. Takezoe, J. Watanabe, Macromolecules 40, 2524 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Taguchi, C.-C. Yen, S. Kang, M. Tokita, J. Watanabe, J. Phys. Chem. B 113, 5341 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, MA, 1975)Google Scholar
  21. 21.
    H. Pleiner, H.R. Brand, in Pattern Formation in Liquid Crystals, edited by A. Buka, L. Kramer (Springer, New York, 1996) p. 15Google Scholar
  22. 22.
    I.M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)Google Scholar
  23. 23.
    M. Liu, Phys. Rev. Lett. 35, 1577 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    H. Brand, M. Dorfle, R. Graham, Ann. Phys. (N.Y.) 119, 434 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    M. Liu, Phys. Rev. A 19, 2090 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    H.R. Brand, Phys. Rev. A 33, 643 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    H.R. Brand, H. Pleiner, F. Ziebert, Phys. Rev. E 74, 021713 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    H.R. Brand, H. Pleiner, Physica A 208, 359 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    P.G. de Gennes, in Liquid Crystals of One- and Two-Dimensional Order, edited by W. Helfrich, G. Heppke (Springer, New York, 1980) p. 231Google Scholar
  30. 30.
    M.S. Green, A.V. Tobolsky, J. Chem. Phys. 14, 80 (1946)ADSCrossRefGoogle Scholar
  31. 31.
    R.G. Larson, Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988)Google Scholar
  32. 32.
    H.R. Brand, H. Pleiner, W. Renz, J. Phys. (Paris) 51, 1065 (1990)CrossRefGoogle Scholar
  33. 33.
    H. Pleiner, H.R. Brand, Mol. Cryst. Liq. Cryst. 199, 407 (1991)CrossRefGoogle Scholar
  34. 34.
    H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 84, 3228 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    H. Pleiner, M. Liu, H.R. Brand, Rheol. Acta 39, 560 (2000)CrossRefGoogle Scholar
  36. 36.
    H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 86, 745 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    M. Grmela, Phys. Lett. A 296, 97 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Pleiner, M. Liu, H.R. Brand, Rheol. Acta 41, 375 (2002)CrossRefGoogle Scholar
  39. 39.
    H. Pleiner, M. Liu, H.R. Brand, Rheol. Acta 43, 502 (2004)CrossRefGoogle Scholar
  40. 40.
    H. Pleiner, M. Liu, H.R. Brand, in IMA Volume in Mathematics and its Applications 141, edited by M.-C.T. Calderer, E.M. Terentjev (Springer, Berlin, 2005) p. 99Google Scholar
  41. 41.
    H.R. Brand, H. Pleiner, Phys. Rev. A 35, 3122 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Ericksen, Arch. Rat. Mech. Anal. 113, 97 (1991)MathSciNetCrossRefGoogle Scholar
  43. 43.
    S.R. de Groot, P. Mazur, Nonequilibrium Thermodynamics (North Holland, Amsterdam, 1962)Google Scholar
  44. 44.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)Google Scholar
  45. 45.
    H.R. Brand, K. Kawasaki, J. Phys. C 19, 937 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    W.P. Mason, Physical Acoustics and the Properties of Solids (D. Van Nostrand, New York, 1958)Google Scholar
  47. 47.
    H.R. Brand, H. Pleiner, Macromol. Rapid Commun. 11, 607 (1990)CrossRefGoogle Scholar
  48. 48.
    H.R. Brand, P.E. Cladis, H. Pleiner, Phys. Rev. E 79, 032701 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    M. Liu, Phys. Rev. Lett. 43, 1740 (1979)ADSCrossRefGoogle Scholar
  50. 50.
    S. Bohlius, H.R. Brand, H. Pleiner, Phys. Rev. E 70, 061411 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1975)Google Scholar
  52. 52.
    H.R. Brand, H. Pleiner, Phys. Rev. A 37, 2736 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    H.R. Brand, H. Pleiner, in Encyclopedia of Materials: Science and Technology (Elsevier) 5, 1214 (2001) and Cholesteric Liquid Crystals: Flow Properties, Thermo- and Electromechanical Coupling, in Reference Module in Materials Science and Materials Engineering, edited by Saleem Hashmi (Elsevier, Oxford, 2016) pp. 1--8Google Scholar
  54. 54.
    D. Svenšek, H. Pleiner, H.R. Brand, Phys. Rev. E 78, 021703 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    H.R. Brand, H. Pleiner, D. Svenšek, Phys. Rev. E 88, 024501 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    H. Pleiner, H.R. Brand, EPL 89, 26003 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    F.C. Frank, Disc. Faraday Soc. 25, 19 (1958)CrossRefGoogle Scholar
  58. 58.
    H.R. Brand, A. Fink, H. Pleiner, Eur. Phys. J. E 38, 65 (2015)CrossRefGoogle Scholar
  59. 59.
    S.T. Kim, H. Finkelmann, Makromol. Chem. Rapid Commun. 22, 429 (2001)CrossRefGoogle Scholar
  60. 60.
    A. Komp, J. Rühe, H. Finkelmann, Makromol. Chem. Rapid Commun. 26, 813 (2005)CrossRefGoogle Scholar
  61. 61.
    H.R. Brand, Makromol. Chem. Rapid Commun. 10, 441 (1989)CrossRefGoogle Scholar
  62. 62.
    A.M. Menzel, H.R. Brand, J. Chem. Phys. 125, 194704 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    P.G. de Gennes, C.R. Acad. Sci. (Paris) B 281, 101 (1975)Google Scholar
  64. 64.
    H.R. Brand, Makromol. Chem. Rapid Commun. 10, 57, 317 (1989)Google Scholar
  65. 65.
    H.R. Brand, H. Pleiner, Eur. Phys. J. E 31, 37 (2010)CrossRefGoogle Scholar
  66. 66.
    H. Pleiner, H.R. Brand, Eur. Phys. J. E 37, 11 (2014)CrossRefGoogle Scholar
  67. 67.
    H. Pleiner, P.E. Cladis, H.R. Brand, Eur. Phys. J. E 20, 257 (2006)CrossRefGoogle Scholar
  68. 68.
    H.R. Brand, H. Pleiner, P.E. Cladis, Physica A 351, 189 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    H. Pleiner, H.R. Brand, Braz. J. Phys. 46, 565 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    J.W. Felix, D. Mukamel, R.M. Hornreich, Phys. Rev. Lett. 57, 2180 (1986)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Helmut R. Brand
    • 1
    • 2
  • Harald Pleiner
    • 2
  • Daniel Svenšek
    • 3
  1. 1.Theoretische Physik IIIUniversität BayreuthBayreuthGermany
  2. 2.Max-Planck-Institute for Polymer ResearchMainzGermany
  3. 3.Department of Physics, Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations