Curvature correction to the mobility of fluid membrane inclusions

Open Access
Regular Article

Abstract.

Using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces, we provide, via a Stokeslet-type approach, a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions.

Graphical abstract

Keywords

Living systems: Biological Matter 

References

  1. 1.
    B. Alberts, Molecular Biology of the Cell (Garland, New York, 2002)Google Scholar
  2. 2.
    P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Daniels, M.S. Turner, Langmuir 23, 6667 (2007)CrossRefGoogle Scholar
  4. 4.
    M.L. Henle, A.J. Levine, Phys. Rev. E 81, 011905 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    F. Quemeneur et al., Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    A. Naji, P.J. Atzberger, F.L.H. Brown, Phys. Rev. Lett. 102, 138102 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    E. Reister-Gottfried, S.M. Leitenberger, U. Seifert, Phys. Rev. E 81, 031903 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    V. Demery, D.S. Dean, Phys. Rev. Lett. 104, 080601 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Camley, F.L.H. Brown, Phys. Rev. E 85, 061921 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R.G. Morris, M.S. Turner, Phys. Rev. Lett. 115, 198101 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    E. Kreyszig, Differential Geometry (Dover Publications, New York, 1991)Google Scholar
  12. 12.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, The Hague, 1983)Google Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)Google Scholar
  14. 14.
    P.G. Saffman, J. Fluid Mech. 73, 593 (1976)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H.A. Stone, J. Fluid Mech. 409, 165 (2000)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W. Helfrich, Z. Naturforsch. 33a, 305 (1977)ADSGoogle Scholar
  17. 17.
    S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces and Membranes (Addison-Wesley Publishing, 1994)Google Scholar
  18. 18.
    C.D. Santangelo, O.J. Farago, Computer-Aided. Mater. Des. 14, 103 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    G. Brannigan, F.L.H. Brown, Biophys. J. 92, 864 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    B. West, F.L.H. Brown, F. Schmid, Biophys. J. 96, 101 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Yoshigaki, Phys. Rev. E 75, 041901 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Aimon et al., Dev. Cell. 28, 212 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.College of EngineeringSwansea University, Bay CampusSwanseaUK

Personalised recommendations