Advertisement

On the vortex dynamics in fractal Fourier turbulence

  • Alessandra S. Lanotte
  • Shiva Kumar Malapaka
  • Luca Biferale
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

Incompressible, homogeneous and isotropic turbulence is studied by solving the Navier-Stokes equations on a reduced set of Fourier modes, belonging to a fractal set of dimension D . By tuning the fractal dimension parameter, we study the dynamical effects of Fourier decimation on the vortex stretching mechanism and on the statistics of the velocity and the velocity gradient tensor. In particular, we show that as we move from D = 3 to D ∼ 2.8 , the statistics gradually turns into a purely Gaussian one. This result suggests that even a mild fractal mode reduction strongly depletes the stretching properties of the non-linear term of the Navier-Stokes equations and suppresses anomalous fluctuations.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)Google Scholar
  2. 2.
    A. Arnèodo et al., EPL 34, 411 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    K.R. Sreenivasan, R.A. Antonia, Annu. Rev. Fluid Mech. 29, 435 (1997)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Mordant, P. Metz, O. Michel, J.-F. Pinton, Phys. Rev. Lett. 87, 214501 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    L. Biferale, G. Boffetta, A. Celani, A. Lanotte, F. Toschi, Phys. Fluids 17, 021701 (2005) DOI:10.1063/1.1846771 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Xu et al., Phys. Rev. Lett. 96, 024503 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A. Arnèodo et al., Phys. Rev. Lett. 98, 254504 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    R.H. Kraichnan, J. Fluid Mech. 62, 305 (1974)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Meneveau, J. Katz, Annu. Rev. Fluid Mech. 32, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Falkovich, K.R. Sreenivasan, Phys. Today 59, 43 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Tsinober, in Turbulence Structure and Vortex Dynamics, edited by J.C.R. Hunt, J.C. Vassilicos (Cambridge University Press, Cambridge, 2011)Google Scholar
  14. 14.
    R.H. Kraichnan, J. Math. Phys. 2, 124 (1961)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S.A. Orszag, Lectures on the Statistical Theory of Turbulence, in Fluid Dynamics, Les Houches 1973, edited by R. Balian, J.L. Peube (Gordon and Breach, New York)Google Scholar
  16. 16.
    U. Frisch, A. Pomyalov, I. Procaccia, S. Sankar Ray, Phys. Rev. Lett. 108, 074501 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Lanotte, R. Benzi, L. Biferale, S.K. Malapaka, F. Toshi, Phys. Rev. Lett. 115, 264502 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Fournier, U. Frisch, Phys. Rev. A 17, 747 (1978)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    T.D. Lee, Q. J. Appl. Math. 10, 69 (1952)Google Scholar
  20. 20.
    E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950)MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Cichowlas, P. Bonaïti, F. Debbasch, M.E. Brachet, Phys. Rev. Lett. 95, 264502 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Ray, Pramana 84, 395 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    V. S. Lvov, A. Pomyalov, I. Procaccia, Phys. Rev. Lett. 89, 064501 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    P. Giuliani, M.H. Jensen, V. Yakhot, Phys. Rev. E 65, 036305 (2002)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.G. Lamorgese, D.A. Caughey, S.B. Pope, Phys. Fluids 17, 015106 (2005)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Dubief, F. Delcayre, J. Turbul. 1, N11 (2000) DOI:10.1088/1468-5248/1/1/011 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Ishihara, T. Gotoh, Y. Kaneda, Annu. Rev. Fluid Mech. 41, 165 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Biferale, A.S. Lanotte, F. Toschi, Physica D 237, 1969 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    L. Biferale, I. Procaccia, Phys. Rep. 414, 43 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Buzzicotti, L. Biferale, U. Frisch, S.S. Ray, Phys. Rev. E 93, 033109 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    G. Falkovich, Phys. Fluids 6, 1411 (1994) DOI:10.1063/1.868255 ADSCrossRefGoogle Scholar
  32. 32.
    D. Lohse, A. Müller-Groeling, Phys. Rev. Lett. 74, (10) (1995)CrossRefGoogle Scholar
  33. 33.
    U. Frisch, S. Kurien, R. Pandit, W. Pauls, S.S. Ray, A. Wirth, J.-Z. Zhu, Phys. Rev. Lett. 101, 144501 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    S. Chakraborty, U. Frisch, S.S. Ray, J. Fluid Mech. 649, 275 (2010)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Gotoh, D. Fukayama, T. Nakano, Phys. Fluids 14, 1065 (2002)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R. Benzi, L. Biferale, R. Fisher, D.Q. Lamb, F. Toschi, J. Fluid Mech. 653, 221 (2010)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    G. Boffetta, A. Celani, A. Mazzino, Phys. Rev. E 71, 036307 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M.S. Chong, A.E. Perry, B.J. Cantwell, Phys. Fluids A 2, 765 (1990)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    H.M. Blackburn, N.N. Mansour, B.J. Cantwell, J. Fluid Mech. 310, 269 (1996)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    B. Tao, J. Katz, C. Meneveau, J. Fluid Mech. 457, 35 (2002)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    B. Luthi, A. Tsinober, W. Kinzelbach, J. Fluid Mech. 528, 87 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    J. Martín, A. Ooi, M.S. Chong, J. Soria, Phys. Fluids 10, 2336 (1998) DOI:10.1063/1.869752 ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Viellefosse, Physica A 125, 150 (1984)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    B.J. Cantwell, Phys. Fluids A 4, 782 (1992)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S.S. Girimaji, S.B. Pope, Phys. Fluids A 2, 242 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    M. Chertkov, A. Pumir, B. Shraiman, Phys. Fluids 11, 2394 (1999)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    L. Chevillard, C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    L. Chevillard, C. Meneveau, L. Biferale, F. Toschi, Phys. Fluids 20, 101504 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    F. van der Bos et al., Phys. Fluids 14, 2456 (2002)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    F. Waleffe, Phys. Fluids A 4, 350 (1992) DOI:10.1063/1.858309 ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    P. Constantin, in New Perspectives in Turbulence, edited by L. Sirovich (Springer, Berlin, 1991) pp. 229--261Google Scholar
  53. 53.
    G. Gallavotti, in Turbulence in Spatially Extended Systems, Les Houches 1992, edited by R. Benzi, C. Basdevant, S. Ciliberto (Nova Science, Commack, New York, 1993) pp. 45--74Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandra S. Lanotte
    • 1
  • Shiva Kumar Malapaka
    • 2
    • 3
  • Luca Biferale
    • 3
  1. 1.ISAC-CNR and INFN Sez. LecceLecceItaly
  2. 2.IIIT-Bangalore 26/CBangaloreIndia
  3. 3.Dept. of Physics and INFNUniversity of Rome Tor VergataRomaItaly

Personalised recommendations