Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear

  • M. T. Dang
  • D. Denisov
  • B. Struth
  • A. Zaccone
  • P. Schall
Open Access
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

Abstract.

The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the reversibility and hysteresis of the sharp symmetry change from anisotropic solid to isotropic liquid dynamics observed in the oscillatory shear of colloidal glasses (D. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5 14359 (2015)). We use strain sweeps with increasing and decreasing strain amplitude to show that, in analogy with equilibrium transitions, this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis. Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects arise from frequency-dependent non-affine structural cage rearrangements at large strain. These results consolidate the first-order-like nature of the oscillatory shear transition and quantify related hysteresis effects both via measurements and theoretical modelling.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    M.D. Ediger, C.A. Angel, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)CrossRefGoogle Scholar
  2. 2.
    A.L. Greer, Science 267, 1947 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    G. Kumar, H.X. Tang, J. Schroers, Nature 457, 868 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    D. Jang, J.R. Greer, Nat. Mater. 9, 215 (2010)ADSGoogle Scholar
  5. 5.
    A.S. Argon (Editor), The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, 2013)Google Scholar
  6. 6.
    R.G. Larson (Editor), The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)Google Scholar
  7. 7.
    V. Chikkadi, D.M. Miedema, M.T. Dang, B. Nienhuis, P. Schall, Phys. Rev. Lett. 113, 208301 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5, 14359 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    K.H. Nagamanasa, S. Gokhale, A.K. Sood, R. Ganapathy, Phys. Rev. E 89, 062308 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R. Jeanneret, D. Bartolo, Nat. Commun. 5, 3474 (2014)CrossRefGoogle Scholar
  11. 11.
    E.D. Knowlton, D.J. Pine, L. Cipelletti, Soft Matter 10, 6931 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    T. Kawasaki, L. Berthier, arXiv:1507.04120 (2015)
  13. 13.
    J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet, Nature 454, 84 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    P. Olsson, S. Teitel, Phys. Rev. Lett. 99, 178001 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    C.E. Maloney, M.O. Robbins, Phys. Rev. Lett 102, 225502 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Lemaitre, C. Caroli, Phys. Rev. Lett. 103, 065501 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Chattoraj, C. Caroli, A. Lemaitre, Phys. Rev. Lett. 105, 26601 (2010)CrossRefGoogle Scholar
  18. 18.
    C. Heussinger, J.-L. Barrat, Phys. Rev. Lett. 102, 218303 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    V. Chikkadi, E. Woldhuis, M. van Hecke, P. Schall, EPL 112, 36004 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, P. Schall, Phys. Rev. Lett. 107, 198303 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, EPL 100, 56001 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Rahmani, R. Koopman, D. Denisov, P. Schall, Sci. Rep. 2, 1064 (2013)Google Scholar
  23. 23.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Phys. Rev. E 58, 6073 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 75, 2770 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    P. Sollich, Phys. Rev. E 58, 738 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    P. Hébraud, F. Lequeux, J.P. Munch, D.J. Pine, Phys. Rev. Lett. 78, 4657 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Brader, M. Siebenbürger, M. Ballauff, K. Reinheimer, M. Wilhelm, S.J. Frey, F. Weysser, M. Fuchs, Phys. Rev. E 82, 061401 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    G. Petekidis, A. Moussaid, P.N. Pusey, Phys. Rev. E 66, 051402 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    G. Petekidis, D. Vlassopoulos, P.N. Pusey, Faraday Discuss. Chem. Soc. 123, 287 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A. Le Grand, G. Petekidis, Rheol. Acta 47, 579 (2008)CrossRefGoogle Scholar
  33. 33.
    S.A. Rogers, P.M Lettinga, J. Rheol. 56, 1 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Rogers, B.M. Erwin, D. Vlassopoulos, M. Cloitre, J. Rheol. 55, 435 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    K. van der Vaart, Y. Rahmani, R. Zargar, Z. Hu, D. Bonn, P. Schall, J. Rheol. 57, 1195 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    N. Koumakis, J.F. Brady, G. Petekidis, Phys. Rev. Lett 110, 178301 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    A. Zaccone, E. Scossa-Romano, Phys. Rev. B 83, 184205 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Zaccone, J.R. Blundell, E.M. Terentjev, Phys. Rev. B 84, 174119 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    A. Zaccone, E.M. Terentjev, Phys. Rev. Lett. 110, 178002 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Zaccone, Mod. Phys. Lett. B 27, 1330002 (2013)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    D.V. Denisov, M.T. Dang, B. Struth, G.H. Wegdam, P. Schall, Sci. Rep. 3, 1631 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    C.P. Amann, D. Denisov, M.T. Dang, B. Struth, P. Schall, M. Fuchs, J. Chem. Phys. 143, 034505 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    B. Ackerson, Physica A 174, 15 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    T.G. Mason et al., Phys. Rev. E 56, 3150 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    J. Zausch, J. Horbach, EPL 88, 60001 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    M.T. Dang, V. Chikkadi, R. Zargar, D.M. Miedema, D. Bonn, A. Zaccone, P. Schall, submittedGoogle Scholar
  47. 47.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, 1954)Google Scholar
  48. 48.
    J.-P. Hansen, I.R. MacDonald, Theory of Simple Liquids (Academic Press, 2005)Google Scholar
  49. 49.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)Google Scholar
  50. 50.
    N.V. Priezjev, Phys. Rev. E 93, 013001 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Alexander, Phys. Rep. 296, 65 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999)Google Scholar
  53. 53.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1959)Google Scholar
  54. 54.
    G.L. Hunter, E.R. Weeks, Rep. Prog. Phys. 75, 066501 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1958)Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • M. T. Dang
    • 1
  • D. Denisov
    • 1
  • B. Struth
    • 2
  • A. Zaccone
    • 3
  • P. Schall
    • 1
  1. 1.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Deutsches Elektronen-SynchrotronHamburgGermany
  3. 3.Statistical Physics Group, Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK

Personalised recommendations