Surface roughness induced cracks of the deposition film from drying colloidal suspension

  • Tingting Liu
  • Hao Luo
  • Jun Ma
  • Weiguang Xie
  • Yan Wang
  • Guangyin Jing
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation

Abstract.

We investigate crack formation in deposition films from drying colloidal suspension drops, by varying the roughness and texture of the substrate. The experimental results indicate that the crack number or crack spacing presents a general dependence on the substrate roughness, despite the orientation of the substrate textures. Interestingly, the crack spacing decreases with the increase of the roughness. Two possible mechanisms are proposed to understand the dependence of the cracks on roughness. Firstly, the concentration reduction of the drying suspension due to collecting colloidal particles from the substrate textures decreases the crack spacing. Secondly, stress concentration resulting from the defects (the notches in textures) in the dried deposition enhances crack formation. However, a quantitative estimation by the calculation of the stress concentrating factors reveals that the notch of the substrate textures dominates crack variation. The results here bring forth a practical method for controlling the crack orientation and suppression, and a potential application to crack-free coatings, films and paintings during the drying of complex fluids.

Graphical abstract

Keywords

Topical Issue: Wetting and Drying: Physics and Pattern Formation 

References

  1. 1.
    J. Ma, G. Jing, Phys. Rev. E 86, 061406 (2012)CrossRefADSGoogle Scholar
  2. 2.
    G. Jing, J. Ma, J. Phys. Chem. B 116, 6225 (2012)CrossRefGoogle Scholar
  3. 3.
    W.P. Lee, A.F. Routh, Langmuir 20, 9885 (2004)CrossRefGoogle Scholar
  4. 4.
    M.S. Tirumkudulu, W.B. Russel, Langmuir 21, 4938 (2005)CrossRefGoogle Scholar
  5. 5.
    K.B. Singh, M.S. Tirumkudulu, Phys. Rev. Lett. 98, 218302 (2007)CrossRefADSGoogle Scholar
  6. 6.
    E. Dufresne, D. Stark, N. Greenblatt, J. Cheng, J. Hutchinson et al., Langmuir 22, 7144 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Lakshmikantha, P.C. Prat, A. Ledesma, Can. Geotech. J. 49, 264 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Xu, A. Mujumdar, B. Yu, Dry Technol. 27, 636 (2009)CrossRefGoogle Scholar
  9. 9.
    R.D. Deegan, Phys. Rev. E 61, 475 (2000)CrossRefADSGoogle Scholar
  10. 10.
    C. Annarelli, J. Fornazero, J. Bert, J. Colombani, Eur. Phys. J. E 5, 599 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-Bedia, Y. Couder, Phys. Rev. E 71, 046215 (2005)CrossRefADSGoogle Scholar
  12. 12.
    H. Colina, S. Roux, Eur. Phys. J. E 1, 189 (2000)CrossRefGoogle Scholar
  13. 13.
    D. Brutin, Colloids Surf., A 429, 112 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Brouwers, Phys. Rev. E 74, 031309 (2006)CrossRefADSGoogle Scholar
  15. 15.
    S. Mahdavi, F. Akhlaghi, J. Mater. Sci. 46, 7883 (2011)CrossRefADSGoogle Scholar
  16. 16.
    J.G. Mcgrath, R.D. Bock, J.M. Cathcart, L.A. Lyon, Chem. Mater. 19, 1584 (2007)CrossRefGoogle Scholar
  17. 17.
    V. Lazarus, L. Pauchard, Soft Matter 7, 2552 (2011)CrossRefADSGoogle Scholar
  18. 18.
    H.M. Gorr, J.M. Zueger, J.A. Barnard, J. Phys. Chem. B 116, 12213 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Bisschop, Int. J. Fract. 154, 211 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    G. Marín, H. Gelderblom, D. Lohse, J.H. Snoeijer, Phys. Rev. Lett. 107, 085502 (2011)CrossRefADSGoogle Scholar
  21. 21.
    K.I. Dragnevski, A.F. Routh, M.W. Murray, A.M. Donald, Langmuir 26, 7747 (2010)CrossRefGoogle Scholar
  22. 22.
    C.H. Chon, S. Paik, J.B. Tipton, K.D. Kihm, Langmuir 23, 2953 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Boulogne, F. Giorgiutti-Dauphiné, L. Pauchard, Oil Gas Sci. Technol. 69, 397 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Mougin, H. Haidara, Langmuir 18, 9566 (2002)CrossRefGoogle Scholar
  25. 25.
    F. Carle, D. Brutin, Langmuir 29, 9962 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Brutin, B. Sobac, C. Nicloux, J. Heat Transfer 134, 061101 (2012)CrossRefGoogle Scholar
  27. 27.
    I. Kim, K.D. Kihm, Langmuir 28, 9195 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Smith, J. Sharp, Langmuir 27, 8009 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Krishna Darbha, C. Fischer, A. Michler, J. Luetzenkirchen, T. Schäfer et al., Langmuir 28, 6606 (2012)CrossRefGoogle Scholar
  30. 30.
    T. Liu, H. Luo, J. Ma, P. Wang, L. Wang et al., Phys. Lett. A 378, 1191 (2014)CrossRefADSGoogle Scholar
  31. 31.
    A. Mathur, A.-D. Brown, J. Erlebacher, Langmuir 22, 582 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Horn, H.G. Schoberth, S. Hiltl, A. Chiche, Q. Wang et al., Faraday Discuss. 143, 143 (2009)CrossRefADSGoogle Scholar
  33. 33.
    K.H. Nam, I.H. Park, S.H. Ko, Nature 485, 221 (2012)CrossRefADSGoogle Scholar
  34. 34.
    B.C. Kim, T. Matsuoka, C. Moraes, J. Huang, M. Thouless et al., Sci. Rep. 3, 3027 (2013)ADSGoogle Scholar
  35. 35.
    D. Nowell, D. Dini, P. Duó, J. Strain Anal. Eng. Des. 38, 429 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Zarzycki, J. Non-Cryst. Solids 100, 359 (1988)CrossRefADSGoogle Scholar
  37. 37.
    C. Allain, L. Limat, Phys. Rev. Lett. 74, 2981 (1995)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tingting Liu
    • 1
  • Hao Luo
    • 1
  • Jun Ma
    • 2
  • Weiguang Xie
    • 3
  • Yan Wang
    • 4
  • Guangyin Jing
    • 1
    • 5
  1. 1.School of PhysicsNorthwest UniversityXi’anChina
  2. 2.Department of PhysicsThe Hong Kong University of Science and TechnologyHong KongChina
  3. 3.Siyuan Laboratory, Department of PhysicsJinan UniversityGuangdongChina
  4. 4.Beijing Aeronautical Science & Technology Research Institute of COMACBeijing>China
  5. 5.National Key Laboratory and Incubation Base of Photoelectric Technology and Functional MaterialsNorthwest UniversityXianChina

Personalised recommendations