Skip to main content
Log in

Surface roughness induced cracks of the deposition film from drying colloidal suspension

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate crack formation in deposition films from drying colloidal suspension drops, by varying the roughness and texture of the substrate. The experimental results indicate that the crack number or crack spacing presents a general dependence on the substrate roughness, despite the orientation of the substrate textures. Interestingly, the crack spacing decreases with the increase of the roughness. Two possible mechanisms are proposed to understand the dependence of the cracks on roughness. Firstly, the concentration reduction of the drying suspension due to collecting colloidal particles from the substrate textures decreases the crack spacing. Secondly, stress concentration resulting from the defects (the notches in textures) in the dried deposition enhances crack formation. However, a quantitative estimation by the calculation of the stress concentrating factors reveals that the notch of the substrate textures dominates crack variation. The results here bring forth a practical method for controlling the crack orientation and suppression, and a potential application to crack-free coatings, films and paintings during the drying of complex fluids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ma, G. Jing, Phys. Rev. E 86, 061406 (2012)

    Article  ADS  Google Scholar 

  2. G. Jing, J. Ma, J. Phys. Chem. B 116, 6225 (2012)

    Article  Google Scholar 

  3. W.P. Lee, A.F. Routh, Langmuir 20, 9885 (2004)

    Article  Google Scholar 

  4. M.S. Tirumkudulu, W.B. Russel, Langmuir 21, 4938 (2005)

    Article  Google Scholar 

  5. K.B. Singh, M.S. Tirumkudulu, Phys. Rev. Lett. 98, 218302 (2007)

    Article  ADS  Google Scholar 

  6. E. Dufresne, D. Stark, N. Greenblatt, J. Cheng, J. Hutchinson et al., Langmuir 22, 7144 (2006)

    Article  Google Scholar 

  7. M. Lakshmikantha, P.C. Prat, A. Ledesma, Can. Geotech. J. 49, 264 (2012)

    Article  Google Scholar 

  8. P. Xu, A. Mujumdar, B. Yu, Dry Technol. 27, 636 (2009)

    Article  Google Scholar 

  9. R.D. Deegan, Phys. Rev. E 61, 475 (2000)

    Article  ADS  Google Scholar 

  10. C. Annarelli, J. Fornazero, J. Bert, J. Colombani, Eur. Phys. J. E 5, 599 (2001)

    Article  Google Scholar 

  11. S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-Bedia, Y. Couder, Phys. Rev. E 71, 046215 (2005)

    Article  ADS  Google Scholar 

  12. H. Colina, S. Roux, Eur. Phys. J. E 1, 189 (2000)

    Article  Google Scholar 

  13. D. Brutin, Colloids Surf., A 429, 112 (2013)

    Article  Google Scholar 

  14. H. Brouwers, Phys. Rev. E 74, 031309 (2006)

    Article  ADS  Google Scholar 

  15. S. Mahdavi, F. Akhlaghi, J. Mater. Sci. 46, 7883 (2011)

    Article  ADS  Google Scholar 

  16. J.G. Mcgrath, R.D. Bock, J.M. Cathcart, L.A. Lyon, Chem. Mater. 19, 1584 (2007)

    Article  Google Scholar 

  17. V. Lazarus, L. Pauchard, Soft Matter 7, 2552 (2011)

    Article  ADS  Google Scholar 

  18. H.M. Gorr, J.M. Zueger, J.A. Barnard, J. Phys. Chem. B 116, 12213 (2012)

    Article  Google Scholar 

  19. J. Bisschop, Int. J. Fract. 154, 211 (2008)

    Article  MATH  Google Scholar 

  20. G. Marín, H. Gelderblom, D. Lohse, J.H. Snoeijer, Phys. Rev. Lett. 107, 085502 (2011)

    Article  ADS  Google Scholar 

  21. K.I. Dragnevski, A.F. Routh, M.W. Murray, A.M. Donald, Langmuir 26, 7747 (2010)

    Article  Google Scholar 

  22. C.H. Chon, S. Paik, J.B. Tipton, K.D. Kihm, Langmuir 23, 2953 (2007)

    Article  Google Scholar 

  23. F. Boulogne, F. Giorgiutti-Dauphiné, L. Pauchard, Oil Gas Sci. Technol. 69, 397 (2013)

    Article  Google Scholar 

  24. K. Mougin, H. Haidara, Langmuir 18, 9566 (2002)

    Article  Google Scholar 

  25. F. Carle, D. Brutin, Langmuir 29, 9962 (2013)

    Article  Google Scholar 

  26. D. Brutin, B. Sobac, C. Nicloux, J. Heat Transfer 134, 061101 (2012)

    Article  Google Scholar 

  27. I. Kim, K.D. Kihm, Langmuir 28, 9195 (2012)

    Article  Google Scholar 

  28. M. Smith, J. Sharp, Langmuir 27, 8009 (2011)

    Article  Google Scholar 

  29. G. Krishna Darbha, C. Fischer, A. Michler, J. Luetzenkirchen, T. Schäfer et al., Langmuir 28, 6606 (2012)

    Article  Google Scholar 

  30. T. Liu, H. Luo, J. Ma, P. Wang, L. Wang et al., Phys. Lett. A 378, 1191 (2014)

    Article  ADS  Google Scholar 

  31. A. Mathur, A.-D. Brown, J. Erlebacher, Langmuir 22, 582 (2006)

    Article  Google Scholar 

  32. A. Horn, H.G. Schoberth, S. Hiltl, A. Chiche, Q. Wang et al., Faraday Discuss. 143, 143 (2009)

    Article  ADS  Google Scholar 

  33. K.H. Nam, I.H. Park, S.H. Ko, Nature 485, 221 (2012)

    Article  ADS  Google Scholar 

  34. B.C. Kim, T. Matsuoka, C. Moraes, J. Huang, M. Thouless et al., Sci. Rep. 3, 3027 (2013)

    ADS  Google Scholar 

  35. D. Nowell, D. Dini, P. Duó, J. Strain Anal. Eng. Des. 38, 429 (2003)

    Article  Google Scholar 

  36. J. Zarzycki, J. Non-Cryst. Solids 100, 359 (1988)

    Article  ADS  Google Scholar 

  37. C. Allain, L. Limat, Phys. Rev. Lett. 74, 2981 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyin Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Luo, H., Ma, J. et al. Surface roughness induced cracks of the deposition film from drying colloidal suspension. Eur. Phys. J. E 39, 24 (2016). https://doi.org/10.1140/epje/i2016-16024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16024-7

Keywords

Navigation