Skip to main content
Log in

A regularised singularity approach to phoretic problems

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

An efficient, accurate, and flexible numerical method is proposed for the solution of the swimming problem of one or more autophoretic particles in the purely diffusive limit. The method relies on successive boundary element solutions of the Laplacian and the Stokes flow equations using regularised Green’s functions for swift, simple implementations, an extension of the well-known method of “regularised stokeslets” for Stokes flow problems. The boundary element method is particularly suitable for phoretic problems, since no quantities in the domain bulk are required to compute the swimming velocity. For time-dependent problems, the method requires no re-meshing and simple boundaries such as a plane wall may be added at no increase to the size of the linear system through the method of images. The method is validated against two classical examples for which an analytical or semi-analytical solution is known, a two-sphere system and a Janus particle, and provides a rigorous computational pipeline to address further problems with complex geometry and multiple bodies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)

    Article  Google Scholar 

  3. A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

    Article  ADS  Google Scholar 

  4. F.A. Godínez, L. Koens, T.D. Montenegro-Johnson, R. Zenit, E. Lauga, Exp. Fluids 56, 97 (2015)

    Article  Google Scholar 

  5. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

    Article  ADS  Google Scholar 

  6. A. Walther, A.H.E. Müller, Soft Matter 4, 663 (2008)

    Article  ADS  Google Scholar 

  7. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  Google Scholar 

  8. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  9. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  10. A. Brown, W. Poon, Soft Matter 10, 4016 (2014)

    Article  ADS  Google Scholar 

  11. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)

    Article  ADS  Google Scholar 

  12. R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  13. S. Shklyaev, J.F. Brady, U.M. Cordova-Figueroa, J. Fluid Mech. 748, 488 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Michelin, E. Lauga, Euro. Phys. J. E 38, 1 (2015)

    Article  Google Scholar 

  15. S. Reigh, R. Kapral, Soft matter 11, 3149 (2015)

    Article  ADS  Google Scholar 

  16. F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010)

    Article  Google Scholar 

  17. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

    Article  ADS  Google Scholar 

  18. R. Soto, R. Golestanian, Phys. Rev. Lett. 112, 068301 (2014)

    Article  ADS  Google Scholar 

  19. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)

    Article  ADS  Google Scholar 

  20. R. Singh, S. Ghose, R. Adhikari, J. Stat. Mech. 2015, 06017 (2015)

    Article  MathSciNet  Google Scholar 

  21. S. Michelin, T.D. Montenegro-Johnson, G. De Canio, N. Lobato-Dauzier, E. Lauga, Soft Matter 11, 5804 (2015)

    Article  ADS  Google Scholar 

  22. R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Cortez, L. Fauci, A. Medovikov, Phys. Fluids 17, 1 (2005)

    Article  MathSciNet  Google Scholar 

  24. D.J. Smith, Proc. R. Soc. London A 465, 3605 (2009)

    Article  MATH  ADS  Google Scholar 

  25. S. Gueron, N. Liron, Biophys. J. 63, 1045 (1992)

    Article  ADS  Google Scholar 

  26. J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, J. Comput. Phys. 227, 4600 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. http://uk.mathworks.com/matlabcentral/profile/authors/5102158-thomas-montenegro-johnson

  29. P.O. Persson, G. Strang, SIAM Rev. 46, 329 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. J.H.M. Frijns, S.L. De Snoo, R. Schoonhoven, IEEE Trans. on Biomed. Engin. 47, 1336 (2000)

    Article  Google Scholar 

  31. M.A. Taylor, B.A. Wingate, R.E. Vincent, SIAM J. Numer. Anal. 38, 1707 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. A.A. Smith, T.D. Johnson, D.J. Smith, J.R. Blake, J. Fluid Mech. 705, 26 (2012)

    Article  MATH  ADS  Google Scholar 

  33. https://people.sc.fsu.edu/~jburkardt

  34. C. Pozrikidis, A practical guide to boundary element methods with the software library BEMLIB (CRC Press, 2002)

  35. H. Guo, J. Nawroth, Y. Ding, E. Kanso, Phys. Fluids 26, 091901 (2014)

    Article  ADS  Google Scholar 

  36. S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)

    Article  ADS  Google Scholar 

  38. B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Montenegro-Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenegro-Johnson, T., Michelin, S. & Lauga, E. A regularised singularity approach to phoretic problems. Eur. Phys. J. E 38, 139 (2015). https://doi.org/10.1140/epje/i2015-15139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15139-7

Keywords

Navigation