Skip to main content
Log in

Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Tubular lipid membranes (TLMs) are formed by an external pulling force from artificial or biological bilayer vesicles and can be subsequently stabilized by incorporating proteins or amphiphilic polymers into the lipid bilayer. The arising spontaneous curvature of the lipid sheet allows switching off the pulling force without TLM destabilization. However, here we show that during this process two different thermal fluctuation modes drastically increase their amplitudes making fluctuations of the TLM much greater than its radius. Due to the system’s proximity to the critical fluctuation point, a weak axial compressive force is sufficient to destabilize the TLM. Its absolute value is shown to be much smaller than that of the pulling force required for the initial lipid nanotube formation. Induced complex instability was studied in the frame of Landau phase transition theory. The process involves two consecutive second-order phase transitions and leads to the tube deformation combining annular corrugation with completely unconventional chiral buckling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gennis, Biomembranes: Molecular Structure and Functions (Springer-Verlag, New York, Inc., 1989).

  2. R.E. Waugh, J. Song, S. Svetina, B. Zeks, Biophys. J. 61, 974 (1992).

    Article  ADS  Google Scholar 

  3. R.M. Hochmuth, H.C. Wiles, E.A. Evans, J.T. McCown, Biophys. J. 39, 83 (1982).

    Article  ADS  Google Scholar 

  4. L. Bo, R.E. Waugh, Biophys. J. 55, 509 (1989).

    Article  ADS  Google Scholar 

  5. A. Roux, G. Koster, M. Lenz, B. Sorre, J.B. Manneville, P. Nassoy, P. Bassereau, Proc. Natl. Acad. Sci. U.S.A. 107, 4141 (2010).

    Article  ADS  Google Scholar 

  6. A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau, B. Goud, EMBO J. 24, 1537 (2005).

    Article  Google Scholar 

  7. B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau, A. Roux, Proc. Natl. Acad. Sci. U.S.A. 109, 173 (2012).

    Article  ADS  Google Scholar 

  8. G. Koster, M. VanDuijin, B. Hofs, Proc. Natl. Acad. Sci. U.S.A. 100, 15583 (2003).

    Article  ADS  Google Scholar 

  9. S. Monnier, S.B. Rochal, A.Parmeggiani, V.L. Lorman, Phys. Rev. Lett. 105, 028102 (2010).

    Article  ADS  Google Scholar 

  10. J.-B. Fournier, P. Galatola, Phys. Rev. Lett. 98, 018103 (2007).

    Article  ADS  Google Scholar 

  11. M.V. Avramenko, I.Yu. Golushko, A.E. Myasnikova, S.B. Rochal, Physica E 68, 133 (2015).

    Article  ADS  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 7, Theory of Elasticity, 2nd edition (Pergamon, New York, 1986).

  13. R. Bar-Ziv, E. Moses, Phys. Rev. Lett. 73, 1392 (1994).

    Article  ADS  Google Scholar 

  14. R. Bar-Ziv, T. Tlusty, E. Moses, Phys. Rev. Lett. 79, 1158 (1997).

    Article  ADS  Google Scholar 

  15. E. Hannezo, J. Prost, J.F. Joanny, Phys. Rev. Lett. 109, 018101 (2012).

    Article  ADS  Google Scholar 

  16. W. Helfrich, Z. Naturforsch. 28, 693 (1973).

    MathSciNet  Google Scholar 

  17. P.B. Canham, J. Theor. Biol. 26, 61 (1970).

    Article  Google Scholar 

  18. I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 88, 209901 (2002).

    Article  ADS  Google Scholar 

  19. K.L. Gurin, V.V. Lebedev, A.R. Muratov, JETP 83, 321 (1996).

    ADS  Google Scholar 

  20. T.R. Powers, Rev. Mod. Phys. 82, 1607 (2010).

    Article  ADS  Google Scholar 

  21. M. Deserno, Chem. Phys. Lipids. 185, 11 (2015).

    Article  Google Scholar 

  22. D.J. Bukman, J.H. Yao, M. Wortis, Phys. Rev. E 54, 5463 (1996).

    Article  ADS  Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 5, Statistical Physics (Pergamon, New York, 1980).

  24. J.-C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions (World Scientific Publishing Co, Singapore, 1987).

  25. S.P. Thimoshenko, J.M. Gere, Theory of Elastic Stability, 2nd edition (McGraw-Hill Book Co., Inc., New York, 1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Golushko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golushko, I.Y., Rochal, S.B. & Lorman, V.L. Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature. Eur. Phys. J. E 38, 112 (2015). https://doi.org/10.1140/epje/i2015-15112-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15112-6

Keywords

Navigation