Skip to main content
Log in

A novel method for producing unequal sized droplets in micro- and nanofluidic channels

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We propose a novel method for producing unequal sized droplets through breakup of droplets. This method does not have the disadvantages of the available methods and also reduces the dependence of the droplets volume ratio on the inlet velocity of the system by up to 26 percent. The employed method for investigating the proposed system relies on 3D numerical simulation using the VOF algorithm and the results have been obtained with various valve ratios for both the micro- and nanoscale. The results indicate that the droplet length during the breakup process increases linearly with time. The droplet length at the nanoscale is smaller than that at the micro scale. It has been shown that the maximum local capillary number in this system is 2.5 times the average capillary number. Therefore one can use the analytical theories based on the low capillary number assumptions to investigate the method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A.G. Jamie, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys.: Condens. Matter 24, 284120 (2012).

    Google Scholar 

  2. A. Moosavi, M. Rauscher, S. Dietrich, J. Phys.: Condens. Matter 21, 464120 (2009) (Special issue).

    ADS  Google Scholar 

  3. L. Bacri, F.B. Wyart, Eur. Phys. J. E 3, 87 (2000).

    Article  Google Scholar 

  4. S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).

    Article  Google Scholar 

  5. Z. Yao, M.J. Bowick, Eur. Phys. J. E 34, 32 (2011).

    Article  Google Scholar 

  6. Y.S. Shin, H.C. Lim, Eur. Phys. J. E 34, 74 (2014).

    Article  Google Scholar 

  7. D.A. Hoang, L.M. Portela, C.R. Kleijn, M.T. Kreutzer, V.V. Steijn, J. Fluid Mech. 717, R4 (2013).

    Article  ADS  Google Scholar 

  8. T. Fu, Y. Ma, H.Z. Li, AIChE J. 60, 1920 (2014).

    Article  Google Scholar 

  9. J. Wang, D. Yu, Microfluidics and Nanofluidics, Accepted Paper, DOI:10.1007/s10404-014-1458-z (2014).

  10. S.E. Mhatre, S.D. Deshmukh, R.M. Thaokar, Eur. Phys. J. E 35, 39 (2012).

    Article  Google Scholar 

  11. S. Harada, T. Mitsui, K. Sato, Eur. Phys. J. E 35, 1 (2012).

    Article  Google Scholar 

  12. S.H. Tan, S.M. Sohel Murshed, N.T. Nguyen, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 41, 165501 (2008).

    Article  ADS  Google Scholar 

  13. J.H. Chang, J.J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).

    Google Scholar 

  14. B. Han, H. Meng, J. Power Sources 217, 268 (2012).

    Article  Google Scholar 

  15. H. Liu, Y. Zhang, J. Appl. Phys. 106, 034906 (2009).

    Article  ADS  Google Scholar 

  16. G.F. Christopher, N.N. Noharuddin, J.A. Taylor, L.A. Shelley, Phys. Rev. E 78, 036317 (2008).

    Article  ADS  Google Scholar 

  17. J. Tice, H. Song, A. Lyon, R. Ismagilov, Langmuir 19, 9127 (2003).

    Article  Google Scholar 

  18. A.K. Kulshreshtha, N. Onkar Singh, G. Michael Wall, Pharmaceutical Suspensions: From Formulation Development to Manufacturing (Springer Science & Business Media, 2009) Section 1.2.2.

  19. A. Bedram, A. Moosavi, J. Appl. Fluid Mech. 6, 81 (2013).

    Google Scholar 

  20. S. Afkhami, A.M. Leshansky, Y. Renardy, Phys. Fluids 23, 022002 (2011).

    Article  ADS  Google Scholar 

  21. D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2004).

    Article  ADS  Google Scholar 

  22. A. Bedram, A. Moosavi, Eur. Phys. J. E 34, 78 (2011).

    Article  Google Scholar 

  23. B.R. Sehgal, R.R. Nourgaliev, T.N. Dinh, Progr. Nucl. Energy 34, 471 (1999).

    Article  Google Scholar 

  24. J.H. Choi, S.K. Lee, J.M. Lim, S.M. Yang, G.R. Yi, Lab Chip 10, 456 (2010).

    Article  Google Scholar 

  25. T.H. Ting, Y.F. Yap, N.T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Appl. Phys. Lett. 89, 234101 (2006).

    Article  ADS  Google Scholar 

  26. A. Bedram, A.E. Darabi, A. Moosavi, S. Kazemzade, ASME J. Fluids Eng. 137, 031202 (2014).

    Article  Google Scholar 

  27. A. Bedram, A. Moosavi, S. Kazemzadeh, Phys. Rev. E 91, 053012 (2015).

    Article  ADS  Google Scholar 

  28. R. Maniero, O. Masbernat, E. Climent, F. Risso, Int. J. Multiphase Flow 42, 1 (2012).

    Article  Google Scholar 

  29. T. Lemenand, P. Dupont, D.D. Valle, H. Peerhossaini, Chem. Engin. Res. Design 91, 2587 (2013).

    Article  Google Scholar 

  30. F. Ravelet, C. Colin, F. Risso, Phys. Fluids 23, 103301 (2011).

    Article  ADS  Google Scholar 

  31. F. Abbassi-Sourki, B. Mosto, M.A. Huneault, Rheol. Acta 51, 111 (2012).

    Article  Google Scholar 

  32. Y.K. Wei, Y. Qian, H. Xu, Comput. Multiphase Flows 4, 111 (2012).

    Article  MathSciNet  Google Scholar 

  33. M. Desse, J. Mitchell, B. Wolf, T. Budtova, Food Hydrocoll. 25, 495 (2011).

    Article  Google Scholar 

  34. M.S. Korlie, A. Mukherjee, B.G. Nita, J.G. Stevens, A.D. Trubatch, P. Yecko, J. Phys.: Condens. Matter 20, 204143 (2008).

    ADS  Google Scholar 

  35. G.F. Christopher, J. Bergstein, N.B. End, M. Poon, C. Nguyen, S.L. Anna, Lab Chip 9, 1102 (2009).

    Article  Google Scholar 

  36. J. Nie, R.T. Kennedy, Anal. Chem. 82, 7852 (2010).

    Article  Google Scholar 

  37. W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Phys. Rev. Lett. 95, 208304 (2005).

    Article  ADS  Google Scholar 

  38. I. Lee, Y. Yoo, Z. Cheng, H.K. Jeong, Adv. Funct. Mater. 18, 4014 (2008).

    Article  Google Scholar 

  39. W. Yining, F. Taotao, C. Zhu, Y. Lu, Y. Ma, H.Z. Li, Microfluid Nanofluid 13, 723 (2012).

    Article  Google Scholar 

  40. V. Cristini, J. Blawzdziewicz, M. Loewenberg, Phys. Fluids 10, 1781 (1998).

    Article  ADS  Google Scholar 

  41. H.N. Yoshikawa, F. Zoueshtiagh, H. Caps, P. Kurowski, P. Petitjeans, Eur. Phys. J. E 31, 191 (2010).

    Article  Google Scholar 

  42. A.J. Griggs, A.Z. Zinchenko, R.H. Davis, Int. J. Multiphase Flow 34, 408 (2008).

    Article  Google Scholar 

  43. Y.F. Yap, S.H. Tan, N.T. Nguyen, S.M. Sohel Murshed, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 42, 065503 (2009).

    Article  ADS  Google Scholar 

  44. F.P. Bretherton, J. Fluid Mech. 166, 10 (1961).

    MathSciNet  Google Scholar 

  45. A.M. Leshansky, L.M. Pismen, Phys. Fluids 21, 023303 (2009).

    Article  ADS  Google Scholar 

  46. J.D. Crounse, K.A. McKinney, A.J. Kwan, P.O. Wennberg, Anal. Chem. 78, 6726 (2006).

    Article  Google Scholar 

  47. N. Wongprasert, M.D. Symans, ASCE J. Structural Eng. 131, 867 (2005).

    Article  Google Scholar 

  48. S.S. Parmar, S.W. Benson, J. Phys. Chem. 92, 2652 (1988).

    Article  Google Scholar 

  49. D.L. Youngs, Numer. Methods Fluid Dyn. 24, 273 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Moosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedram, A., Moosavi, A. & Kazemzadeh Hannani, S. A novel method for producing unequal sized droplets in micro- and nanofluidic channels. Eur. Phys. J. E 38, 96 (2015). https://doi.org/10.1140/epje/i2015-15096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15096-1

Keywords

Navigation