Advertisement

A novel method for producing unequal sized droplets in micro- and nanofluidic channels

  • Ahmad Bedram
  • Ali Moosavi
  • Siamak Kazemzadeh Hannani
Regular Article

Abstract

We propose a novel method for producing unequal sized droplets through breakup of droplets. This method does not have the disadvantages of the available methods and also reduces the dependence of the droplets volume ratio on the inlet velocity of the system by up to 26 percent. The employed method for investigating the proposed system relies on 3D numerical simulation using the VOF algorithm and the results have been obtained with various valve ratios for both the micro- and nanoscale. The results indicate that the droplet length during the breakup process increases linearly with time. The droplet length at the nanoscale is smaller than that at the micro scale. It has been shown that the maximum local capillary number in this system is 2.5 times the average capillary number. Therefore one can use the analytical theories based on the low capillary number assumptions to investigate the method.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    E.A.G. Jamie, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys.: Condens. Matter 24, 284120 (2012).Google Scholar
  2. 2.
    A. Moosavi, M. Rauscher, S. Dietrich, J. Phys.: Condens. Matter 21, 464120 (2009) (Special issue).ADSGoogle Scholar
  3. 3.
    L. Bacri, F.B. Wyart, Eur. Phys. J. E 3, 87 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).CrossRefGoogle Scholar
  5. 5.
    Z. Yao, M.J. Bowick, Eur. Phys. J. E 34, 32 (2011).CrossRefGoogle Scholar
  6. 6.
    Y.S. Shin, H.C. Lim, Eur. Phys. J. E 34, 74 (2014).CrossRefGoogle Scholar
  7. 7.
    D.A. Hoang, L.M. Portela, C.R. Kleijn, M.T. Kreutzer, V.V. Steijn, J. Fluid Mech. 717, R4 (2013).CrossRefADSGoogle Scholar
  8. 8.
    T. Fu, Y. Ma, H.Z. Li, AIChE J. 60, 1920 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Wang, D. Yu, Microfluidics and Nanofluidics, Accepted Paper, DOI:10.1007/s10404-014-1458-z (2014).
  10. 10.
    S.E. Mhatre, S.D. Deshmukh, R.M. Thaokar, Eur. Phys. J. E 35, 39 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Harada, T. Mitsui, K. Sato, Eur. Phys. J. E 35, 1 (2012).CrossRefGoogle Scholar
  12. 12.
    S.H. Tan, S.M. Sohel Murshed, N.T. Nguyen, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 41, 165501 (2008).CrossRefADSGoogle Scholar
  13. 13.
    J.H. Chang, J.J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).Google Scholar
  14. 14.
    B. Han, H. Meng, J. Power Sources 217, 268 (2012).CrossRefGoogle Scholar
  15. 15.
    H. Liu, Y. Zhang, J. Appl. Phys. 106, 034906 (2009).CrossRefADSGoogle Scholar
  16. 16.
    G.F. Christopher, N.N. Noharuddin, J.A. Taylor, L.A. Shelley, Phys. Rev. E 78, 036317 (2008).CrossRefADSGoogle Scholar
  17. 17.
    J. Tice, H. Song, A. Lyon, R. Ismagilov, Langmuir 19, 9127 (2003).CrossRefGoogle Scholar
  18. 18.
    A.K. Kulshreshtha, N. Onkar Singh, G. Michael Wall, Pharmaceutical Suspensions: From Formulation Development to Manufacturing (Springer Science & Business Media, 2009) Section 1.2.2.Google Scholar
  19. 19.
    A. Bedram, A. Moosavi, J. Appl. Fluid Mech. 6, 81 (2013).Google Scholar
  20. 20.
    S. Afkhami, A.M. Leshansky, Y. Renardy, Phys. Fluids 23, 022002 (2011).CrossRefADSGoogle Scholar
  21. 21.
    D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2004).CrossRefADSGoogle Scholar
  22. 22.
    A. Bedram, A. Moosavi, Eur. Phys. J. E 34, 78 (2011).CrossRefGoogle Scholar
  23. 23.
    B.R. Sehgal, R.R. Nourgaliev, T.N. Dinh, Progr. Nucl. Energy 34, 471 (1999).CrossRefGoogle Scholar
  24. 24.
    J.H. Choi, S.K. Lee, J.M. Lim, S.M. Yang, G.R. Yi, Lab Chip 10, 456 (2010).CrossRefGoogle Scholar
  25. 25.
    T.H. Ting, Y.F. Yap, N.T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Appl. Phys. Lett. 89, 234101 (2006).CrossRefADSGoogle Scholar
  26. 26.
    A. Bedram, A.E. Darabi, A. Moosavi, S. Kazemzade, ASME J. Fluids Eng. 137, 031202 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Bedram, A. Moosavi, S. Kazemzadeh, Phys. Rev. E 91, 053012 (2015).CrossRefADSGoogle Scholar
  28. 28.
    R. Maniero, O. Masbernat, E. Climent, F. Risso, Int. J. Multiphase Flow 42, 1 (2012).CrossRefGoogle Scholar
  29. 29.
    T. Lemenand, P. Dupont, D.D. Valle, H. Peerhossaini, Chem. Engin. Res. Design 91, 2587 (2013).CrossRefGoogle Scholar
  30. 30.
    F. Ravelet, C. Colin, F. Risso, Phys. Fluids 23, 103301 (2011).CrossRefADSGoogle Scholar
  31. 31.
    F. Abbassi-Sourki, B. Mosto, M.A. Huneault, Rheol. Acta 51, 111 (2012).CrossRefGoogle Scholar
  32. 32.
    Y.K. Wei, Y. Qian, H. Xu, Comput. Multiphase Flows 4, 111 (2012).MathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Desse, J. Mitchell, B. Wolf, T. Budtova, Food Hydrocoll. 25, 495 (2011).CrossRefGoogle Scholar
  34. 34.
    M.S. Korlie, A. Mukherjee, B.G. Nita, J.G. Stevens, A.D. Trubatch, P. Yecko, J. Phys.: Condens. Matter 20, 204143 (2008).ADSGoogle Scholar
  35. 35.
    G.F. Christopher, J. Bergstein, N.B. End, M. Poon, C. Nguyen, S.L. Anna, Lab Chip 9, 1102 (2009).CrossRefGoogle Scholar
  36. 36.
    J. Nie, R.T. Kennedy, Anal. Chem. 82, 7852 (2010).CrossRefGoogle Scholar
  37. 37.
    W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Phys. Rev. Lett. 95, 208304 (2005).CrossRefADSGoogle Scholar
  38. 38.
    I. Lee, Y. Yoo, Z. Cheng, H.K. Jeong, Adv. Funct. Mater. 18, 4014 (2008).CrossRefGoogle Scholar
  39. 39.
    W. Yining, F. Taotao, C. Zhu, Y. Lu, Y. Ma, H.Z. Li, Microfluid Nanofluid 13, 723 (2012).CrossRefGoogle Scholar
  40. 40.
    V. Cristini, J. Blawzdziewicz, M. Loewenberg, Phys. Fluids 10, 1781 (1998).CrossRefADSGoogle Scholar
  41. 41.
    H.N. Yoshikawa, F. Zoueshtiagh, H. Caps, P. Kurowski, P. Petitjeans, Eur. Phys. J. E 31, 191 (2010).CrossRefGoogle Scholar
  42. 42.
    A.J. Griggs, A.Z. Zinchenko, R.H. Davis, Int. J. Multiphase Flow 34, 408 (2008).CrossRefGoogle Scholar
  43. 43.
    Y.F. Yap, S.H. Tan, N.T. Nguyen, S.M. Sohel Murshed, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 42, 065503 (2009).CrossRefADSGoogle Scholar
  44. 44.
    F.P. Bretherton, J. Fluid Mech. 166, 10 (1961).MathSciNetGoogle Scholar
  45. 45.
    A.M. Leshansky, L.M. Pismen, Phys. Fluids 21, 023303 (2009).CrossRefADSGoogle Scholar
  46. 46.
    J.D. Crounse, K.A. McKinney, A.J. Kwan, P.O. Wennberg, Anal. Chem. 78, 6726 (2006).CrossRefGoogle Scholar
  47. 47.
    N. Wongprasert, M.D. Symans, ASCE J. Structural Eng. 131, 867 (2005).CrossRefGoogle Scholar
  48. 48.
    S.S. Parmar, S.W. Benson, J. Phys. Chem. 92, 2652 (1988).CrossRefGoogle Scholar
  49. 49.
    D.L. Youngs, Numer. Methods Fluid Dyn. 24, 273 (1982).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ahmad Bedram
    • 1
  • Ali Moosavi
    • 1
  • Siamak Kazemzadeh Hannani
    • 1
  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations