Collision of viscoelastic bodies: Rigorous derivation of dissipative force

  • Denis S. Goldobin
  • Eugeniy A. Susloparov
  • Anastasiya V. Pimenova
  • Nikolai V. Brilliantov
Regular Article


We report a new theory of dissipative forces acting between colliding viscoelastic bodies. The impact velocity is assumed not to be large to neglect plastic deformations in the material and propagation of sound waves. We consider the general case of bodies of an arbitrary convex shape and of different materials. We develop a mathematically rigorous perturbation scheme to solve the continuum mechanics equations that deal with both displacement and displacement rate fields and accounts for the dissipation in the bulk of the material. The perturbative solution of these equations allows to go beyond the previously used quasi-static approximation and obtain the dissipative force. The derived force does not suffer from the inconsistencies of the quasi-static approximation, like the violation of the third Newton’s law for the case of different materials, and depends on particle deformation and deformation rate.

Graphical abstract


Flowing Matter: Granular Matter 


  1. 1.
    H.J. Herrmann, J.-P. Hovi, S. Luding (Editors), Physics of Dry Granular Media NATO ASI Series (Kluwer, Dordrecht, 1998).Google Scholar
  2. 2.
    H. Jaeger, S. Nagel, R. Behringer, Rev. Mod. Phys. 68, 1259 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    H. Hinrichsen, D.E. Wolf, The Physics of Granular Media (Wiley, Berlin, 2004).Google Scholar
  4. 4.
    J. Duran, Sands, Powders and Grains (Springer-Verlag, Berlin, 2000).Google Scholar
  5. 5.
    R. Greenberg, A. Brahic, Planetary Rings (The University of Arizona Press, Tucson, 1984).Google Scholar
  6. 6.
    N.V. Brilliantov, T. Pöschel, Kinetic theory of Granular Gases (Oxford University Press, Oxford, 2004).Google Scholar
  7. 7.
    T. Pöschel, S. Luding, Granular Gases, Vol. 564 of Lecture Notes in Physics (Springer, Berlin, 2001).Google Scholar
  8. 8.
    T. Pöschel, N.V. Brilliantov, Granular Gas Dynamics, Vol. 624 of Lecture Notes in Physics (Springer, Berlin, 2003).Google Scholar
  9. 9.
    A. Barrat, E. Trizac, M.H. Ernst, J. Phys.: Condens. Matter 17, 2429 (2005).ADSGoogle Scholar
  10. 10.
    R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    O. Zik, D. Levine, S. Lipson, S. Shtrikman, J. Stavans, Phys. Rev. Lett. 73, 644 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    H. Hertz, J. f. reine u. angewandte Math. 92, 156 (1882).MATHMathSciNetGoogle Scholar
  14. 14.
    T. Poeschel, T. Schwager, Computational Granular Dynamics (Springer, Berlin, 2005).Google Scholar
  15. 15.
    S. Luding, Nonlinearity 22, R101 (2009).MATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    T. Poeschl, Z. Phys. 46, 142 (1928).ADSCrossRefGoogle Scholar
  17. 17.
    M. Montaine, M. Heckel, C. Kruelle, T. Schwager, T. Poeschel, Phys. Rev. E 84, 041306 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    Y.-H. Pao, J. Appl. Phys. 26, 1083 (1955).MATHADSCrossRefGoogle Scholar
  19. 19.
    N. Brilliantov, F. Spahn, J. Hertzsch, T. Pöschel, Phys. Rev. E 53, 5382 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    G. Kuwabara, K. Kono, J. Appl. Phys. Part 1 26, 1230 (1987).CrossRefGoogle Scholar
  21. 21.
    Q.J. Zheng, H.P. Zhu, A.B. Yu, Powder Technol. 226, 130 (2012).CrossRefGoogle Scholar
  22. 22.
    Q.J. Zheng, Z.Y. Zhou, A.B. Yu, Powder Technol. 248, 25 (2013).CrossRefGoogle Scholar
  23. 23.
    N.V. Brilliantov, A.V. Pimenova, D.S. Goldobin, EPL 109, 14005 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Oxford University Press, Oxford, 1965).Google Scholar
  25. 25.
    A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics (Dover Publications Inc., New York, 1963).Google Scholar
  26. 26.
    M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965).Google Scholar
  27. 27.
    N.V. Brilliantov, T. Poeschel, Collision of adhesive viscoelastic particles, in The Physics of Granular Media edited by H. Hinrichsen, D. Wolf, (Wiley-VCH, Berlin, 2004).Google Scholar
  28. 28.
    N.V. Brilliantov, N. Albers, F. Spahn, T. Pöschel, Phys. Rev. E 76, 051302 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    E. Dintwa, M. van Zeebroeck, H. Ramon, Eur. Phys. J. B 39, 77 (2004).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Denis S. Goldobin
    • 1
    • 2
    • 3
  • Eugeniy A. Susloparov
    • 2
  • Anastasiya V. Pimenova
    • 1
  • Nikolai V. Brilliantov
    • 3
  1. 1.Institute of Continuous Media MechanicsUB RASPermRussia
  2. 2.Department of Theoretical PhysicsPerm State UniversityPermRussia
  3. 3.Department of MathematicsUniversity of LeicesterLeicesterUK

Personalised recommendations