Skip to main content
Log in

Collision of viscoelastic bodies: Rigorous derivation of dissipative force

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report a new theory of dissipative forces acting between colliding viscoelastic bodies. The impact velocity is assumed not to be large to neglect plastic deformations in the material and propagation of sound waves. We consider the general case of bodies of an arbitrary convex shape and of different materials. We develop a mathematically rigorous perturbation scheme to solve the continuum mechanics equations that deal with both displacement and displacement rate fields and accounts for the dissipation in the bulk of the material. The perturbative solution of these equations allows to go beyond the previously used quasi-static approximation and obtain the dissipative force. The derived force does not suffer from the inconsistencies of the quasi-static approximation, like the violation of the third Newton’s law for the case of different materials, and depends on particle deformation and deformation rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Herrmann, J.-P. Hovi, S. Luding (Editors), Physics of Dry Granular Media NATO ASI Series (Kluwer, Dordrecht, 1998).

  2. H. Jaeger, S. Nagel, R. Behringer, Rev. Mod. Phys. 68, 1259 (1996).

    Article  ADS  Google Scholar 

  3. H. Hinrichsen, D.E. Wolf, The Physics of Granular Media (Wiley, Berlin, 2004).

  4. J. Duran, Sands, Powders and Grains (Springer-Verlag, Berlin, 2000).

  5. R. Greenberg, A. Brahic, Planetary Rings (The University of Arizona Press, Tucson, 1984).

  6. N.V. Brilliantov, T. Pöschel, Kinetic theory of Granular Gases (Oxford University Press, Oxford, 2004).

  7. T. Pöschel, S. Luding, Granular Gases, Vol. 564 of Lecture Notes in Physics (Springer, Berlin, 2001).

  8. T. Pöschel, N.V. Brilliantov, Granular Gas Dynamics, Vol. 624 of Lecture Notes in Physics (Springer, Berlin, 2003).

  9. A. Barrat, E. Trizac, M.H. Ernst, J. Phys.: Condens. Matter 17, 2429 (2005).

    ADS  Google Scholar 

  10. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002).

    Article  ADS  Google Scholar 

  11. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002).

    Article  ADS  Google Scholar 

  12. O. Zik, D. Levine, S. Lipson, S. Shtrikman, J. Stavans, Phys. Rev. Lett. 73, 644 (1994).

    Article  ADS  Google Scholar 

  13. H. Hertz, J. f. reine u. angewandte Math. 92, 156 (1882).

    MATH  MathSciNet  Google Scholar 

  14. T. Poeschel, T. Schwager, Computational Granular Dynamics (Springer, Berlin, 2005).

  15. S. Luding, Nonlinearity 22, R101 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. T. Poeschl, Z. Phys. 46, 142 (1928).

    Article  ADS  Google Scholar 

  17. M. Montaine, M. Heckel, C. Kruelle, T. Schwager, T. Poeschel, Phys. Rev. E 84, 041306 (2011).

    Article  ADS  Google Scholar 

  18. Y.-H. Pao, J. Appl. Phys. 26, 1083 (1955).

    Article  MATH  ADS  Google Scholar 

  19. N. Brilliantov, F. Spahn, J. Hertzsch, T. Pöschel, Phys. Rev. E 53, 5382 (1996).

    Article  ADS  Google Scholar 

  20. G. Kuwabara, K. Kono, J. Appl. Phys. Part 1 26, 1230 (1987).

    Article  Google Scholar 

  21. Q.J. Zheng, H.P. Zhu, A.B. Yu, Powder Technol. 226, 130 (2012).

    Article  Google Scholar 

  22. Q.J. Zheng, Z.Y. Zhou, A.B. Yu, Powder Technol. 248, 25 (2013).

    Article  Google Scholar 

  23. N.V. Brilliantov, A.V. Pimenova, D.S. Goldobin, EPL 109, 14005 (2015).

    Article  ADS  Google Scholar 

  24. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Oxford University Press, Oxford, 1965).

  25. A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics (Dover Publications Inc., New York, 1963).

  26. M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965).

  27. N.V. Brilliantov, T. Poeschel, Collision of adhesive viscoelastic particles, in The Physics of Granular Media edited by H. Hinrichsen, D. Wolf, (Wiley-VCH, Berlin, 2004).

  28. N.V. Brilliantov, N. Albers, F. Spahn, T. Pöschel, Phys. Rev. E 76, 051302 (2007).

    Article  ADS  Google Scholar 

  29. E. Dintwa, M. van Zeebroeck, H. Ramon, Eur. Phys. J. B 39, 77 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Brilliantov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldobin, D.S., Susloparov, E.A., Pimenova, A.V. et al. Collision of viscoelastic bodies: Rigorous derivation of dissipative force. Eur. Phys. J. E 38, 55 (2015). https://doi.org/10.1140/epje/i2015-15055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15055-x

Keywords

Navigation