Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes

  • L. N. Lisetski
  • A. P. Fedoryako
  • A. N. Samoilov
  • S. S. Minenko
  • M. S. Soskin
  • N. I. Lebovka
Regular Article

Abstract.

Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

Supplementary material

10189_2014_24_MOESM1_ESM.doc (352 kb)
Supplementary material

References

  1. 1.
    I. Dierking, G. Scalia, P. Morales, D. Leclere, Adv. Mater. 16, 865 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Rahman, W. Lee, J. Phys. D: Appl. Phys. 42, 063001 (2009)CrossRefADSGoogle Scholar
  3. 3.
    K. Sigdel, G. Iannacchione, Eur. Phys. J. E 34, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, Top. Curr. Chem. 318, 331 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012)CrossRefADSGoogle Scholar
  6. 6.
    Scalia, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012), Chapt. Liquid Crystals of Carbon Nanotubes and Carbon Nanotubes in Liquid Crystals, pp. 341--377Google Scholar
  7. 7.
    M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann, Eur. Phys. J. E 37, 7 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Lisetski, N. Lebovka, S. Naydenov, M. Soskin, J. Mol. Liq. 164, 143 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Ji, Y. Huang, E. Terentjev, Langmuir 27, 13254 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Kuhnast, C. Tschierske, J. Lagerwall, Chem. Commun. 46, 6989 (2010)CrossRefGoogle Scholar
  11. 11.
    N. Lebovka, L. Lisetski, M. Nesterenko, V. Panikarskaya, N. Kasian, S. Minenko, M. Soskin, Liq. Cryst. 40, 968 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Goncharuk, N. Lebovka, L. Lisetski, S. Minenko, J. Phys. D: Appl. Phys. 42, 165411 (2009)CrossRefADSGoogle Scholar
  13. 13.
    L. Lisetski, S. Minenko, A. Fedoryako, N. Lebovka, Physica E 41, 431 (2009)CrossRefADSGoogle Scholar
  14. 14.
    I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, R. Yamaguchi, Opt. Express 20, 3499 (2012)CrossRefADSGoogle Scholar
  15. 15.
    O. Yaroshchuk, S. Tomylko, I. Gvozdovskyy, R. Yamaguchi, Appl. Opt. 52, E53 (2013)CrossRefADSGoogle Scholar
  16. 16.
    R. Basu, G.S. Iannacchione, Appl. Phys. Lett. 95, 173113 (2009)CrossRefADSGoogle Scholar
  17. 17.
    A.G. Fuh, W. Lee, K.C. Huang, Liq. Cryst. 40, 745 (2013)CrossRefGoogle Scholar
  18. 18.
    B.R. Jian, C.Y. Tang, W. Lee, Carbon 49, 910 (2011)CrossRefGoogle Scholar
  19. 19.
    F.C. Lin, P.C. Wu, B.R. Jian, W. Lee, Adv. Condens. Matter Phys. 2013, 271574 (2013)Google Scholar
  20. 20.
    O. Trushkevych, F. Golden, M. Pivnenko, H. Xu, N. Collings, W. Crossland, S. Muller, R. Jakoby, Electron. Lett. 46, 693 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Cirtoaje, E. Petrescu, C. Motoc, Physica E 54, 242 (2013)CrossRefADSGoogle Scholar
  22. 22.
    S. Prasad, M. Kumar, C. Yelamaggad, Carbon 59, 512 (2013)CrossRefGoogle Scholar
  23. 23.
    D.A. Dunmur, M.R. Manterfield, W.H. Miller, J.K. Dunleavy, Mol. Crys. Liq. Cryst. 45, 127 (1978)CrossRefGoogle Scholar
  24. 24.
    M. Gu, Y. Yin, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 76, 061702 (2007)CrossRefADSGoogle Scholar
  25. 25.
    C. Laurent, E. Flahaut, A. Peigney, Carbon 48, 2994 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Lysetskiy, V. Panikarskaya, O. Sidletskiy, N. Kasian, S. Kositsyn, P. Shtifanyuk, N. Lebovka, M. Lisunova, O. Melezhyk, Mol. Cryst. Liq. Cryst. 478, 127 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Lisetski, N. Lebovka, O. Sidletskiy, V. Panikarskaya, N. Kasian, S. Kositsyn, M. Lisunova, O. Melezhyk, Funct. Mater. 14, 233 (2007)Google Scholar
  28. 28.
    T. Uchida, H. Seki, Liquid Crystals: Applications and Uses Vol. 3 (World Scientific, Singapore, 1990) Chapt. Surface Alignment of Liquid Crystals, pp. 21--25Google Scholar
  29. 29.
    H.S. Lee, Nanotechnology and Nanomaterials ``Syntheses and Applications of Carbon Nanotubes and Their Composites'' (InTech - Open Access Company, 2013) Chapt. Classification of Mass-Produced Carbon Nanotubes and Their Physico-Chemical Properties, pp. 39--53Google Scholar
  30. 30.
    H.S. Lee, C.H. Yun, S.K. Kim, J.H. Choi, C.J. Lee, H.J. Jin, H. Lee, S.J. Park, M. Park, Appl. Phys. Lett. 95, 134104 (2009)CrossRefADSGoogle Scholar
  31. 31.
    U.O. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995)CrossRefGoogle Scholar
  32. 32.
    A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)CrossRefGoogle Scholar
  33. 33.
    J.D.J. Ingle, S.R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988)Google Scholar
  34. 34.
    K. Kamaras, A. Pekker, M. Bruckner, F. Borondics, A.G. Rinzler, D.B. Tanner, M.E. Itkis, R.C. Haddon, Y. Tan, D.E. Resasco, Phys. Status Solidi B 245, 2229 (2008)CrossRefADSGoogle Scholar
  35. 35.
    C.M. Weber, D.M. Eisele, J.P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Mullen, J.L. Lyon, R. Williams, D.A.V. Bout et al., Small 6, 184 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Pekker, F. Borondics, K. Kamarás, A.G. Rinzler, D.B. Tanner, Phys. Status Solidi B 243, 3485 (2006)CrossRefADSGoogle Scholar
  37. 37.
    V. Ponevchinsky, A.I. Goncharuk, V.I. Vasil'ev, N.I. Lebovka, M.S. Soskin, Proc. SPIE 7613, 761306 (2010)CrossRefGoogle Scholar
  38. 38.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 1992)Google Scholar
  39. 39.
    A. Davis, A. Marshak, Fractal Frontiers (World Scientific, Singapore, 1997), Chapt. Lévy kinematics in slab geometry: scaling of transmission probability, pp. 63--72Google Scholar
  40. 40.
    M.L. Larsen, A.S. Clark, J. Quantum Spectrosc. Radiat. Transfer 133, 646 (2014)CrossRefADSGoogle Scholar
  41. 41.
    R. Shaw, A. Kostinski, D. Lanterman, J. Quantum Spectrosc. Radiat. Transfer 75, 13 (2002)CrossRefADSGoogle Scholar
  42. 42.
    H. Stark, Phys. Rep. 351, 387 (2001)CrossRefADSGoogle Scholar
  43. 43.
    B. Lev, S. Chernyshuk, P. Tomchuk, H. Yokoyama, Phys. Rev. E. 65, 021709 (2002)CrossRefADSGoogle Scholar
  44. 44.
    M. Tasinkevych, F. Mondiot, O. Mondain-Monval, J.C. Loudet, Soft Matter 10, 2047 (2014)CrossRefADSGoogle Scholar
  45. 45.
    R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 55, 2958 (1997)CrossRefADSGoogle Scholar
  46. 46.
    T. Araki, H. Tanaka, Phys. Rev. Lett. 97, 127801 (2006)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • L. N. Lisetski
    • 1
  • A. P. Fedoryako
    • 1
  • A. N. Samoilov
    • 1
  • S. S. Minenko
    • 1
  • M. S. Soskin
    • 2
  • N. I. Lebovka
    • 3
  1. 1.Institute for Scintillation MaterialsNAS of UkraineKharkivUkraine
  2. 2.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Institute of Biocolloidal Chemistry named after F.D. OvcharenkoNAS of UkraineKyivUkraine

Personalised recommendations