Advertisement

Proteins in amorphous saccharide matrices: Structural and dynamical insights on bioprotection

  • S. Giuffrida
  • G. Cottone
  • G. Bellavia
  • L. Cordone
Regular Article
Part of the following topical collections:
  1. Neutron Biological Physics

Abstract

Bioprotection by sugars, and in particular trehalose peculiarity, is a relevant topic due to the implications in several fields. The underlying mechanisms are not yet clearly elucidated, and remain the focus of current investigations. Here we revisit data obtained at our lab on binary sugar/water and ternary protein/sugar/water systems, in wide ranges of water content and temperature, in the light of the current literature. The data here discussed come from complementary techniques (Infrared Spectroscopy, Molecular Dynamics simulations, Small Angle X-ray Scattering and Calorimetry), which provided a consistent description of the bioprotection by sugars from the atomistic to the macroscopic level. We present a picture, which suggests that protein bioprotection can be explained in terms of a strong coupling of the biomolecule surface to the matrix via extended hydrogen-bond networks, whose properties are defined by all components of the systems, and are strongly dependent on water content. Furthermore, the data show how carbohydrates having similar hydrogen-bonding capabilities exhibit different efficiency in preserving biostructures.

Graphical abstract

Keywords

Topical issue: Neutron Biological Physics 

References

  1. 1.
    L.M. Crowe, Comp. Biochem. Physiol. A 132, 505 (2002).CrossRefGoogle Scholar
  2. 2.
    J.H. Crowe, Adv. Exp. Med. Biol. 594, 143 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Green, C.A. Angell, J. Phys. Chem. 93, 2880 (1989).CrossRefGoogle Scholar
  4. 4.
    J.F. Carpenter, J.H. Crowe, Biochemistry 28, 3916 (1989).CrossRefGoogle Scholar
  5. 5.
    P.S. Belton, A.M. Gil, Biopolymers 34, 957 (1994).CrossRefGoogle Scholar
  6. 6.
    S.N. Timasheff, Biochemistry 41, 13473 (2002).CrossRefGoogle Scholar
  7. 7.
    J.G. Sampedro, S. Uribe, Mol. Cell Biochem. 256, 319 (2004).CrossRefGoogle Scholar
  8. 8.
    S.D. Allison, B. Chang, T.W. Randolph, J.F. Carpenter, Arch. Biochem. Biophys. 365, 289 (1999).CrossRefGoogle Scholar
  9. 9.
    W.F. Wolkers, H. Oldenhof, M. Alberda, F.A. Hoekstra, Biochim. Biophys. Acta-Gen. Subj. 1379, 83 (1998).CrossRefGoogle Scholar
  10. 10.
    S.H. Gaffney, E. Haslam, T.H. Lilley, T.R.J. Ward, J. Chem. Soc. Faraday Trans. 84, 2545 (1998).CrossRefGoogle Scholar
  11. 11.
    F. Sussich, C. Skopec, J. Brady, A. Cesàro, Carbohydr. Res. 334, 165 (2001).CrossRefGoogle Scholar
  12. 12.
    C. Branca, S. Magazù, G. Maisano, P. Migliardo, J. Chem. Phys. 11, 281 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    S. Magazù, G. Maisano, F. Migliardo, C. Mondelli, Biophys. J. 86, 3241 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    A. Hédoux, J.-F. Willart, R. Ionov, F. Affouard Y. Guinet, L. Paccou, A. Lerbret, M. Descamps, J. Phys. Chem. B 110, 22886 (2006).CrossRefGoogle Scholar
  15. 15.
    J.-A. Seo, A. Hédoux, Y. Guinet, L. Paccou, F. Affouard, A. Lerbret, M. Descamps, J. Phys. Chem. B 114, 6675 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Lerbret, F. Affouard, P. Bordat, A. Hedoux, Y. Guinet, M. Descamps, J. Chem. Phys. 24, 245103 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    A. Hédoux, F. Affouard, M. Descamps, Y. Guinet, L. Paccou, J. Phys.: Condens. Matter 19, 205142 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. Hédoux, J.F. Willart, L. Paccou, Y. Guinet, F. Affouard, A. Lerbret, M. Descamps, J. Phys. Chem. B 113, 6119 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Lerbret, F. Affouard, P. Bordat, A. Hédoux, Y. Guinet, M. Descamps, J. Non-Cryst. Solids 357, 695 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    L. Cordone, M. Ferrand, E. Vitrano, G. Zaccai, Biophys. J. 76, 1043 (1999).CrossRefGoogle Scholar
  21. 21.
    L. Cordone, G. Cottone, S. Giuffrida, G. Palazzo, G. Venturoli, C. Viappiani, BBA-Proteins Proteomics 1749, 252 (2005) and references therein.CrossRefGoogle Scholar
  22. 22.
    L. Cordone, G. Cottone, S. Giuffrida, J. Phys.: Condens. Matter 19, 205110 (2007) and references therein.ADSCrossRefGoogle Scholar
  23. 23.
    A. Lerbret, F. Affouard, A. Hédoux, S. Krenzlin, J. Siepmann, M.C. Bellissent-Funel, M. Descamps, J. Phys. Chem. B 116, 11103 (2012).CrossRefGoogle Scholar
  24. 24.
    F. Francia, M. Dezi, A. Mallardi, G. Palazzo, L. Cordone, G. Venturoli, J. Am. Chem. Soc. 130, 10240 (2008).CrossRefGoogle Scholar
  25. 25.
    M.V. Fedorov, J.M. Goodman, D. Nerukh, S. Schumm, Phys. Chem. Chem. Phys. 13, 2294 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Giuffrida, G. Cottone, F. Librizzi, L. Cordone, J. Phys. Chem. B 107, 13211 (2003).CrossRefGoogle Scholar
  27. 27.
    S. Giuffrida, G. Cottone, L. Cordone, J. Phys. Chem. B 108, 15415 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Giuffrida, G. Cottone, L. Cordone, Biophys. J. 91, 968 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    H. Frauenfelder, F. Parak, R.D. Young, Annu. Rev. Biophys. Chem. 17, 451 (1988).CrossRefGoogle Scholar
  30. 30.
    J. Vojtechovský, K. Chu, J. Berendzen, R.M. Sweet, I. Schlichting, Biophys. J. 77, 2153 (1999).CrossRefGoogle Scholar
  31. 31.
    D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Oxford University Press, London, 1969).Google Scholar
  32. 32.
    S. Giuffrida, G. Cottone, E. Vitrano, L. Cordone, J. Non-Cryst. Solids 357, 677 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    L. Cordone, G. Cottone, S. Giuffrida, F. Librizzi, Chem. Phys. 345, 275 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    U. Samuni, D. Dantsker, C.J. Roche, J.M. Friedman, GENE 398, 234 (2007) and references therein.CrossRefGoogle Scholar
  35. 35.
    A.M. Massari, I.J. Finkelstein, B.L. McClain, A. Goj, X. Wen, K.L. Bren, R.F. Loring, M.D. Fayer, J. Am. Chem. Soc. 127, 14279 (2005).CrossRefGoogle Scholar
  36. 36.
    M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D.M. Leitner, M. Havenith, J. Am. Chem. Soc. 130, 5773 (2008).CrossRefGoogle Scholar
  37. 37.
    M. Paolantoni, L. Comez, M.E. Gallina, P. Sassi, F. Scarponi, D. Fioretto, A. Morresi, J. Phys. Chem. B 113, 7874 (2009).CrossRefGoogle Scholar
  38. 38.
    L. Lupi, L. Comez, M. Paolantoni, D. Fioretto, B.M. Ladanyi, J. Phys. Chem. B 116, 7499 (2012).CrossRefGoogle Scholar
  39. 39.
    S. Perticaroli, L. Comez, M. Paolantoni, P. Sassi, L. Lupi, D. Fioretto, A. Paciaroni, A. Morresi, J. Phys. Chem. B 114, 8262 (2010).CrossRefGoogle Scholar
  40. 40.
    D.P. Miller, J.J. de Pablo, J. Phys. Chem. B 104, 8876 (2000).CrossRefGoogle Scholar
  41. 41.
    G. Cottone, G. Ciccotti, L. Cordone, J. Chem. Phys. 117, 9862 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    G. Cottone, S. Giuffrida, G. Ciccotti, L. Cordone, Proteins 59, 291 (2005).CrossRefGoogle Scholar
  43. 43.
    G. Cottone, J. Phys. Chem. B 111, 3563 (2007).CrossRefGoogle Scholar
  44. 44.
    L. Maragliano, G. Cottone, L. Cordone, G. Ciccotti, Biophys. J. 86, 2765 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    D. Vitkup, D. Ringe, G.A. Petsko, M. Karplus, Nat. Struct. Biol. 7, 34 (2000).CrossRefGoogle Scholar
  46. 46.
    G. Cottone, L. Cordone, G. Ciccotti, Biophys. J. 80, 931 (2001).ADSCrossRefGoogle Scholar
  47. 47.
    R.D. Lins, C.S. Pereira, P.H. Hunemberger, Proteins 55, 177 (2004).CrossRefGoogle Scholar
  48. 48.
    M. Tarek, D.J. Tobias, Phys. Rev. Lett. 88, 138101 (2002).ADSCrossRefGoogle Scholar
  49. 49.
    M. Tarek, D.J. Tobias, Biophys. J. 79, 3244 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    A. Luzar, D. Chandler, Phys. Rev. Lett. 76, 928 (1996).ADSCrossRefGoogle Scholar
  51. 51.
    E.C. Lopez-Diez, S. Bone, Phys. Med. Biol. 45, 3577 (2000).CrossRefGoogle Scholar
  52. 52.
    L. Giachini, F. Francia, L. Cordone, F. Boscherini, G. Venturoli, Biophys. J. 92, 1350 (2007).ADSCrossRefGoogle Scholar
  53. 53.
    P.B. Conrad, J.J. de Pablo, J. Phys. Chem. A 103, 4049 (1999).CrossRefGoogle Scholar
  54. 54.
    A. Longo, S. Giuffrida, G. Cottone, L. Cordone, Phys. Chem. Chem. Phys. 12, 6852 (2010).CrossRefGoogle Scholar
  55. 55.
    S. Giuffrida, M. Panzica, F.M. Giordano, A. Longo, Eur. Phys. J. E 34, 87 (2011).CrossRefGoogle Scholar
  56. 56.
    G.M. Brown, H.A. Levy, Acta Cryst. B 29, 790 (1973).CrossRefGoogle Scholar
  57. 57.
    K. Ibel, H.B. Stuhrmann, J. Mol. Biol. 93, 255 (1975).CrossRefGoogle Scholar
  58. 58.
    J.S. Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).CrossRefGoogle Scholar
  59. 59.
    A. Lerbret, P. Bordat, F. Affouard, M. Descamps, F. Migliardo, J. Phys. Chem. 109, 11046 (2005).Google Scholar
  60. 60.
    J.E. Curtis, H. Nanda, S. Khodadadi, M. Cicerone, H.J. Lee, A. McAuley, S. Krueger, J. Phys. Chem. B 116, 9653 (2012).CrossRefGoogle Scholar
  61. 61.
    F. Sussich, C.E. Skopec, J.W. Brady, A. Cesàro, Food Chem. 122, 388 (2010).CrossRefGoogle Scholar
  62. 62.
    F. Ledl, E. Schleicher, Angew. Chem., Int. Ed. 29, 565 (1990).CrossRefGoogle Scholar
  63. 63.
    G. Bellavia, G. Cottone, S. Giuffrida, A. Cupane, L. Cordone, J. Phys. Chem. B 113, 11543 (2009).CrossRefGoogle Scholar
  64. 64.
    G. Bellavia, S. Giuffrida, G. Cottone, A. Cupane, L. Cordone, J. Phys. Chem. B 115, 6340 (2011).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Giuffrida
    • 1
  • G. Cottone
    • 1
  • G. Bellavia
    • 2
  • L. Cordone
    • 1
  1. 1.Dipartimento di Fisica e ChimicaUniversità degli Studi di PalermoPalermoItaly
  2. 2.Unité Materiaux et Transformations UMR CNRS 8207Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations