Advertisement

Influence of the spatial confinement at nanoscale on the structural surface charging in magnetic nanocolloids

  • A. F. C. Campos
  • R. Aquino
  • F. A. Tourinho
  • F. L. O. Paula
  • J. Depeyrot
Regular Article

Abstract

In this work we focus on the surface charging properties of core shell ferrite nanoparticles dispersed in water, namely magnetic nanocolloids. This structural charge results from the Brönsted acid-base behavior of the particles surface sites and is achieved through hydrolysis reactions. It can be modeled by considering identical charged sites behaving as weak diprotic acids. Then, electrochemical techniques could be implemented to study the acid-base equilibrium between the particle surface and the colloid bulk solution. Simultaneous potentio-conductimetric titrations are therefore performed to determine the thermodynamical constants of the p H-dependent reactions and to obtain the p H variations of the surface charge density. The results reveal that the saturation value of the structural charge strongly depends on the nanoparticle mean size. For large particles, the surface tends to be fully ionized whereas for smaller particles the saturated structural charge decreases drastically. This surface charge reduction is attributed to the existence in smaller particles of metallic surface sites, which cannot be accessible to the proton charge. The existence of such dead sites would be related to hydroxo-bonded sites with very low acidity combined with a quantum size effect, which would affect the charging/discharging process at the surface of the semiconductor ferrite quantum dot.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    H. Yamaguchi, S. Kamiyama, B. Jeyadevan, Proceedings of 12th International Conference on Magnetic Fluids, Sendai, 2010, edited by H. Yamaguchi, S. Kamiyama, B. Jeyadevan, Vol. 323 (Elsevier, Amsterdam, 2011).Google Scholar
  2. 2.
    R.T.M. de Rosales, R. Tavaré, A. Glaria, G. Varma, A. Protti, P.J. Blower, Bioconj. Chem. 22, 455 (2011).CrossRefGoogle Scholar
  3. 3.
    K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, J. Neuro-Oncol. 103, 317 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Adv. Drug Deliver. Rev. 63, 24 (2011).CrossRefGoogle Scholar
  5. 5.
    F. Cousin, E. Dubois, V. Cabuil, Phys. Rev. E 68, 021405 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    G. Meriguet, F. Cousin, E. Dubois, F. Boué, A. Cebers, B. Farago, R. Perzynski, J. Phys. Chem. B 110, 4378 (2006).CrossRefGoogle Scholar
  7. 7.
    F. Gazeau, E. Dubois, J.-C. Bacri, F. Boué, A. Cebers, R. Perzynski, Phys. Rev. E 65, 031403 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    R. Aquino, J. Depeyrot, F.A. Tourinho, E. Dubois, M.H. Sousa, R. Perzynski, Phys. Rev. B 72, 184435 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    E.C. Sousa, H.R. Rechenberg, J. Depeyrot, J.A. Gomes, R. Aquino, F.A. Tourinho, V. Dupuis, R. Perzynski, J. Appl. Phys. 106, 093901 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    E. Hasmonay, E. Dubois, J.-C. Bacri, R. Perzynski, Yu.L. Raikher, V.I. Stepanov, Eur. Phys. J. B 5, 859 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Fortin, C. Wilhelm, J. Servais, C. Menager, J.-C. Bacri, F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007).CrossRefGoogle Scholar
  12. 12.
    J. Lyklema, Fundamentals of Interface and Colloid Science, 1st edition (Academic Press, London, 1995).Google Scholar
  13. 13.
    J. Duval, J. Lyklema, J.M. Kleijn, H.P. van Leeuwen, Langmuir 17, 7573 (2001).CrossRefGoogle Scholar
  14. 14.
    T. Gisler, S.F. Schulz, M. Borvovek, H. Sticher, P. Schurtenberger, B. D’Aguanno, R. Klein, J. Chem. Phys. 101, 9924 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    J.-P. Jolivet, M. Henry, J. Livage, Metal Oxide Chemistry and Synthesis: From Solution To Oxide, 1st edition (J. Wiley & Sons, Chinchester, 2000).Google Scholar
  16. 16.
    A.F.C. Campos, F.A. Tourinho, G.J. Silva, M.C.F.L. Lara, J. Depeyrot, Eur. Phys. J. E 6, 29 (2001).CrossRefGoogle Scholar
  17. 17.
    I.T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, P. Turq, J. Phys. Chem. C 111, 18568 (2007).CrossRefGoogle Scholar
  18. 18.
    J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edition (Academic Press, New York, 1985).Google Scholar
  19. 19.
    F.A. Tourinho, A.F.C. Campos, R. Aquino, M.C.F.L. Lara, G.J. Silva, J. Depeyrot, Braz. J. Phys. 32, 501 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    M. Gunnarsson, M. Rasmusson, S. Wall, E. Ahlberg, J. Ennis, J. Colloid Interface Sci. 240, 448 (2001).CrossRefGoogle Scholar
  21. 21.
    W. Stumm, J.J. Morgan, Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edition (J. Wiley & Sons, New York, 1981).Google Scholar
  22. 22.
    J. Lyklema, Pure Appl. Chem. 63, 895 (1991).CrossRefGoogle Scholar
  23. 23.
    M.L. Machesky, D.J. Wesolowski, D.A. Palmer, K. Ichiro-Hayashi, J. Colloid Interface Sci. 200, 298 (1998).CrossRefGoogle Scholar
  24. 24.
    J.A. Davis, J.O. Leckie, J. Colloid Interface Sci. 67, 90 (1978).CrossRefGoogle Scholar
  25. 25.
    E. Tombácz, M. Szekeres, Langmuir 17, 1411 (2001).CrossRefGoogle Scholar
  26. 26.
    Z. Abbas, C. Labbez, S. Nordholm, E. Ahlberg, J. Phys. Chem. C 112, 5715 (2008).CrossRefGoogle Scholar
  27. 27.
    T. Hiemstra, W.H. Van Riemsdijk, G.H. Bolt, J. Colloid. Interface Sci. 133, 91 (1989).CrossRefGoogle Scholar
  28. 28.
    M. Borkovec, Langmuir 13, 2608 (1997).CrossRefGoogle Scholar
  29. 29.
    M. Knott, I.J. Ford, Phys. Rev. E 63, 031403 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    M. Quesada-Pérez, J. Callejas-Fernández, R. Hidalgo-Álvarez, J. Colloid Interface Sci. 233, 280 (2001).CrossRefGoogle Scholar
  31. 31.
    M. Quesada-Pérez, J. Callejas-Fernández, R. Hidalgo-Álvarez, Phys. Rev. E 61, 574 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    E. Dubois, V. Cabuil, F. Boué, R. Perzynski, J. Chem. Phys. 111, 7147 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    C. Schneider, M. Hanisch, B. Wedel, A. Jusufi, M. Ballauff, J. Colloid Interface Sci. 358, 62 (2011).CrossRefGoogle Scholar
  34. 34.
    S. Durand-Vidal, P. Turq, L. Marang, C. Pagnoux, J.B. Rosenholm, Colloid Surf. A 267, 117 (2005).CrossRefGoogle Scholar
  35. 35.
    J. Yamanaka, Y. Hayashi, N. Ise, T. Yamaguchi, Phys. Rev. E 55, 3028 (1997).ADSCrossRefGoogle Scholar
  36. 36.
    J.R. Rustad, A.R. Felmy, E.J. Bylaska, Geochim. Cosmochim. Acta. 67, 1001 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    J. Yamanaka, S. Hibi, S. Ikeda, M. Yonese, Mol. Simul. 30, 149 (2004).CrossRefGoogle Scholar
  38. 38.
    M. Kobayashi, F. Juillerat, P. Galetto, P. Bowen, M. Borkovec, Langmuir 21, 5761 (2005).CrossRefGoogle Scholar
  39. 39.
    M.K. Ridley, V.A. Hackley, M.L. Machesky, Langmuir 22, 10972 (2006).CrossRefGoogle Scholar
  40. 40.
    D. Arunbabu, A. Sannigrahi, T. Jana, J. Appl. Polym. Sci. 108, 2718 (2008).CrossRefGoogle Scholar
  41. 41.
    C.E. Reese, C.D. Guerrero, J.M. Weissman, K. Lee, S.A. Asher, J. Colloid Interface Sci. 232, 76 (2000).CrossRefGoogle Scholar
  42. 42.
    A.F.C. Campos, F.A. Tourinho, R. Aquino, J. Depeyrot, J. Magn. & Magn. Mater. 310, 2847 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    E. Hasmonay, A. Bee, J.-C. Bacri, Perzynski, J. Phys. Chem. B 103, 6421 (1999).CrossRefGoogle Scholar
  44. 44.
    A.F.C. Campos, E.P. Marinho, M.A. Ferreira, F.A. Tourinho, F.L.O. Paula, J. Depeyrot, Braz. J. Phys. 39, 230 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Gomes, M.H. Sousa, F.A. Tourinho, R. Aquino, G.J. Silva, J. Depeyrot, E. Dubois, R. Perzynski, J. Phys. Chem. C 112, 6220 (2008).CrossRefGoogle Scholar
  46. 46.
    F.A. Tourinho, R. Franck, R. Massart, J. Mater. Sci. 25, 3249 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    M.H. Sousa, F.A. Tourinho, J. Depeyrot, G.J. Silva, M.C.F.L. Lara, J. Phys. Chem. B 105, 1168 (2001).CrossRefGoogle Scholar
  48. 48.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981).ADSCrossRefGoogle Scholar
  49. 49.
    R. Aquino, F.A. Tourinho, R. Itri, M.C.F.L. Lara, J. Depeyrot, J. Magn. & Magn. Mater. 252, 23 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    S. Foner, Rev. Sci. Instrum. 30, 548 (1959).ADSCrossRefGoogle Scholar
  51. 51.
    F. Gazeau, F. Boué, E. Dubois, R. Perzynski, J. Phys.: Condens. Matter. 15, S1305 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    C.R. Alves, R. Aquino, J. Depeyrot, F.A. Tourinho, E. Dubois, R. Perzynski, J. Mater. Sci. 42, 2297 (2007).ADSCrossRefGoogle Scholar
  53. 53.
    FIT2D Software. http://www.esrf.eu/computing/scientific/FIT2D/ (accessed Jun 7, 2011).
  54. 54.
    F.L.O. Paula, G.J. Silva, R. Aquino, J. Depeyrot, J.O. Fossum, K.D. Knudsen, G. Helgesen, F.A. Tourinho, Braz. J. Phys. 39, 163 (2009).ADSGoogle Scholar
  55. 55.
    G. Mériguet, E. Wandersman, E. Dubois, A. Cebers, J.A. Gomes, G. Demouchy, J. Depeyrot, A. Robert, R. Perzynski, Magnetohydrodynamics 48, 415 (2012).Google Scholar
  56. 56.
    L. Vayssieres, J. Phys. Chem. C 113, 4733 (2009).CrossRefGoogle Scholar
  57. 57.
    J.A. Wingrave, Oxide Surfaces, 1st edition (Marcel Dekker, New York, 2001).Google Scholar
  58. 58.
    L.A. Wilen, J.S. Wettlaufer, M. Elbaum, M. Schick, Phys. Rev. B 52, 12426 (1995).ADSCrossRefGoogle Scholar
  59. 59.
    D.J. Fatemi, V.G. Harris, V.M. Browning, J.P. Kirkland, J. Appl. Phys. 83, 6867 (1998).ADSCrossRefGoogle Scholar
  60. 60.
    J. G. Catalano, P. Fenter, C. Park, Geochim. Cosmochim. Act. 73, 2242 (2009).ADSCrossRefGoogle Scholar
  61. 61.
    E. Wasserman, J.R. Rustad, A.R. Felmy, Surf. Sci. 424, 19 (1999).ADSCrossRefGoogle Scholar
  62. 62.
    V. Barron, J. Torrent, J. Colloid Interface Sci. 177, 407 (1996).CrossRefGoogle Scholar
  63. 63.
    J.R. Rustad, Reviews in mineralogy & Geochemistry -- Molecular Modelling Theory: Applications in the Geosciences, edited by R.T. Cygan, J.D. Kubicki, Vol. 42 (Mineralogical Society of America, Washington, 2001).Google Scholar
  64. 64.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio,A. Corrias, J. Phys. Chem. C 113, 8606 (2009).CrossRefGoogle Scholar
  65. 65.
    M.R. Anantharaman, S. Jagatheesan, K.A. Malini, S. Sindhu, A. Narayanasamy, C.N. Chinnasamy, J.P. Jacobs, S. Rejine, K. Seshan, R.H.H. Smits, H.H. Brongersma, J. Magn. & Magn. Mater. 189, 83 (1998).ADSCrossRefGoogle Scholar
  66. 66.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012).CrossRefGoogle Scholar
  67. 67.
    R. Hoyle, J. Sotomayor, G. Will, D. Fitzmaurice, J. Phys. Chem. 101, 10791 (1997).Google Scholar
  68. 68.
    F. Qu, P.C. Morais, J. Chem. Phys. 111, 8588 (1999).ADSCrossRefGoogle Scholar
  69. 69.
    N.M. Park, S.H. Jeon, H.D. Yang, H. Hwang, S.H. Choi, Appl. Phys. Lett. 83, 1014 (2003).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. F. C. Campos
    • 1
  • R. Aquino
    • 1
  • F. A. Tourinho
    • 2
  • F. L. O. Paula
    • 3
  • J. Depeyrot
    • 3
  1. 1.Faculdade UnB - PlanaltinaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations