Skip to main content
Log in

Role of metal ions in growth and stability of Langmuir-Blodgett films on homogeneous and heterogeneous surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Structure and stability of cadmium arachidate (CdA) Langmuir-Blodgett (LB) films on homogeneous (i.e., OH-, H-passivated Si(001) substrates) and heterogeneous (i.e., Br-passivated Si(001) substrates) surfaces were studied using X-ray reflectivity and atomic force microscopy techniques and compared with those of nickel arachidate (NiA) LB films. While on OH-passivated Si, an asymmetric monolayer (AML) structure starts to grow, on H-passivated Si, a symmetric monolayer (SML) of CdA forms, although for both the films, pinhole-type defects are present as usual. However, on heterogeneous Br-passivated Si substrates, a combination of AML, SML, shifted SML and SML on top of AML (i.e., AML/SML), all types of structures are found to grow in such a way that, due to the variation of heights in the out-of-plane direction, ring-shaped in-plane nanopatterns of CdA molecules are generated. Probably due to stronger head-head interactions and higher metal ion-carboxylic ligand bond strength for CdA molecules compared to NiA, easy flipping of SML on top of another preformed SML, i.e. a SML/SML structure formation was not possible and as a result a wave-like modulation is observed for the CdA film on such heterogeneous substrate. The presence of hydrophilic/hydrophobic interfacial stress on the heterogeneous substrate thus modifies the deposited molecular structure so that the top surface morphology for a CdA film is similar to monolayer buckling while that for NiA film is similar to monolayer collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ulman, Introduction to Ultrathin Organic Films (Academic Press, New York, 1991).

  2. D.K. Schwartz, Surf. Sci. Rep. 27, 245 (1997).

    Article  ADS  Google Scholar 

  3. V.M. Kaganer, H. Möhwald, P. Dutta, Rev. Mod. Phys. 71, 779 (1999).

    Article  ADS  Google Scholar 

  4. F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, J. Als-Nielsen, Science 252, 1532 (1991).

    Article  ADS  Google Scholar 

  5. J. Kmetko, A. Datta, G. Evmenenko, P. Dutta, J. Phys. Chem. B 108, 10818 (2001).

    Article  Google Scholar 

  6. V. Dupres, S. Cantin, F. Benhabib, F. Perrot, P. Fontaine, M. Goldmann, J. Daillant, O. Konovalov, Langmuir 19, 10808 (2003).

    Article  Google Scholar 

  7. K.B. Blodgett, I. Langmuir, Phys. Rev. 51, 964 (1937).

    Article  ADS  Google Scholar 

  8. M.C. Petty, Langmuir-Blodgett Films: An Introduction (Cambridge University Press, New York, 1996).

  9. I.R. Peterson, J. Phys. D 23, 379 (1990).

    Article  ADS  Google Scholar 

  10. C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, Science 277, 1978 (1997).

    Article  Google Scholar 

  11. K. Tollner, R. Popovitz-Biro, M. Lahav, D. Milstein, Science 278, 2100 (1997).

    Article  ADS  Google Scholar 

  12. R. Singhal, A. Chaubey, K. Kaneto, W. Takashima, B.D. Malhotra, Biotechnol. Bioeng. 85, 277 (2004).

    Article  Google Scholar 

  13. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 100, 207404 (2008).

    Article  ADS  Google Scholar 

  14. D.K. Schwartz, J. Garnaes, R. Viswanathan, S. Chiruvolu, J.A. Zasadzinski, Phys. Rev. E 47, 1267 (1993).

    Article  Google Scholar 

  15. J.B. Peng, G.T. Barnes, I.R. Gentle, G.J. Foran, J. Phys. Chem. B 104, 5553 (2000).

    Article  Google Scholar 

  16. S. Kundu, A. Datta, S. Hazra, Chem. Phys. Lett. 405, 282 (2005).

    Article  ADS  Google Scholar 

  17. S. Milner, J.F. Joanny, P. Pincus, Europhys. Lett. 9, 495 (1989).

    Article  ADS  Google Scholar 

  18. M.M. Lipp, K.Y.C. Lee, D.Y. Takamoto, J.A. Zasadzinski, A.J. Waring, Phys. Rev. Lett. 81, 1650 (1998).

    Article  ADS  Google Scholar 

  19. C. Fradin, A. Braslau, D. Luzet, M. Alba, C. Gourier, J. Daillant, G. Grübel, G. Vignaud, J.F. Legrand, J. Lal, J.M. Petit, F. Rieutord, Physica B 248, 310 (1998).

    Article  ADS  Google Scholar 

  20. H.E. Ries jr., Nature 281, 287 (1979).

    Article  ADS  Google Scholar 

  21. C. Ybert, W. Lu, G. Möller, C.M. Knobler, J. Phys. Chem. B 106, 2004 (2002).

    Article  Google Scholar 

  22. S. Kundu, A. Datta, S. Hazra, Phys. Rev. E 73, 051608 (2006).

    Article  ADS  Google Scholar 

  23. D. Vaknin, W. Bu, S.K. Satija, A. Travesset, Langmuir 23, 1888 (2007).

    Article  Google Scholar 

  24. K.Y.C. Lee, Annu. Rev. Phys. Chem. 59, 771 (2008).

    Article  ADS  Google Scholar 

  25. B. Kumar, K.A. Suresh, S.K. Gupta, S. Kumar, J. Chem. Phys. 133, 044701 (2010).

    Article  ADS  Google Scholar 

  26. H.F. Okorn-Schmidt, IBM J. Res. Develop. 43, 351 (1999).

    Article  Google Scholar 

  27. X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic Publishers, New York, 2004).

  28. C.-Y. Ruan, V.A. Lobastov, F. Vigliotti, S. Chen, A.H. Zewail, Science 304, 80 (2004).

    Article  ADS  Google Scholar 

  29. J.K. Bal, S. Hazra, Phys. Rev. B 79, 155412 (2009).

    Article  ADS  Google Scholar 

  30. J.K. Bal, S. Kundu, S. Hazra, Phys. Rev. B 81, 045404 (2010).

    Article  ADS  Google Scholar 

  31. P.L. Silvestrelli, F. Toigo, F. Ancilotto, J. Phys. Chem. B 110, 12022 (2006).

    Article  Google Scholar 

  32. W. Dong, R. Wang, G. Mao, H. Möhwald, Soft Matter 2, 686 (2006).

    Article  ADS  Google Scholar 

  33. I.K. Robinson, D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992).

    Article  ADS  Google Scholar 

  34. J. Daillant, A. Gibaud (Editors), X-ray and Neutron Reflectivity: Principles and Applications (Springer, Paris, 1999).

  35. J.K. Bal, S. Hazra, Phys. Rev. B 75, 205411 (2007).

    Article  ADS  Google Scholar 

  36. L.G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  37. S. Kundu, S. Hazra, S. Banerjee, M.K. Sanyal, S.K. Mandal, S. Chaudhuri, A.K. Pal, J. Phys. D 34, L73 (1998).

    Article  Google Scholar 

  38. I. Horcas, R. Fernndez, J.M. Gwez-Rodrguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

    Article  ADS  Google Scholar 

  39. M.J. Bedzyk, W. Gibson, J.A. Golovchenko, J. Vac. Sci. Technol. 20, 634 (1982).

    Article  ADS  Google Scholar 

  40. D.K. Schwartz, J. Garnaes, R. Viswanathan, J.A. Zasadzinski, Science 257, 508 (1992).

    Article  ADS  Google Scholar 

  41. T. Hanada, M. Kawai, Vacuum 41, 650 (1990).

    Article  Google Scholar 

  42. D. Graf, M. Grundner, D. Muhlhoff, M. Dellith, J. Appl. Phys. 69, 7620 (1991).

    Article  ADS  Google Scholar 

  43. S. Xu, P. Xu, M. Ji, X. Liu, M. Ma, J. Zhu, Y. Zhang, J. Mater. Sci. Technol. 9, 437 (1993).

    Google Scholar 

  44. N. Takano, N. Hosoda, T. Yamada, T. Osaka, Electrochim. Acta 44, 3743 (1999).

    Article  Google Scholar 

  45. J.K. Bal, S. Kundu, S. Hazra, Chem. Phys. Lett. 500, 90 (2010).

    Article  ADS  Google Scholar 

  46. J.K. Bal, S. Kundu, S. Hazra, Mater. Chem. Phys. 134, 549 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal, J.K., Kundu, S. & Hazra, S. Role of metal ions in growth and stability of Langmuir-Blodgett films on homogeneous and heterogeneous surfaces. Eur. Phys. J. E 35, 79 (2012). https://doi.org/10.1140/epje/i2012-12079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12079-8

Keywords

Navigation