Advertisement

Role of metal ions in growth and stability of Langmuir-Blodgett films on homogeneous and heterogeneous surfaces

Regular Article

Abstract

Structure and stability of cadmium arachidate (CdA) Langmuir-Blodgett (LB) films on homogeneous (i.e., OH-, H-passivated Si(001) substrates) and heterogeneous (i.e., Br-passivated Si(001) substrates) surfaces were studied using X-ray reflectivity and atomic force microscopy techniques and compared with those of nickel arachidate (NiA) LB films. While on OH-passivated Si, an asymmetric monolayer (AML) structure starts to grow, on H-passivated Si, a symmetric monolayer (SML) of CdA forms, although for both the films, pinhole-type defects are present as usual. However, on heterogeneous Br-passivated Si substrates, a combination of AML, SML, shifted SML and SML on top of AML (i.e., AML/SML), all types of structures are found to grow in such a way that, due to the variation of heights in the out-of-plane direction, ring-shaped in-plane nanopatterns of CdA molecules are generated. Probably due to stronger head-head interactions and higher metal ion-carboxylic ligand bond strength for CdA molecules compared to NiA, easy flipping of SML on top of another preformed SML, i.e. a SML/SML structure formation was not possible and as a result a wave-like modulation is observed for the CdA film on such heterogeneous substrate. The presence of hydrophilic/hydrophobic interfacial stress on the heterogeneous substrate thus modifies the deposited molecular structure so that the top surface morphology for a CdA film is similar to monolayer buckling while that for NiA film is similar to monolayer collapse.

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    A. Ulman, Introduction to Ultrathin Organic Films (Academic Press, New York, 1991).Google Scholar
  2. 2.
    D.K. Schwartz, Surf. Sci. Rep. 27, 245 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    V.M. Kaganer, H. Möhwald, P. Dutta, Rev. Mod. Phys. 71, 779 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, J. Als-Nielsen, Science 252, 1532 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    J. Kmetko, A. Datta, G. Evmenenko, P. Dutta, J. Phys. Chem. B 108, 10818 (2001).CrossRefGoogle Scholar
  6. 6.
    V. Dupres, S. Cantin, F. Benhabib, F. Perrot, P. Fontaine, M. Goldmann, J. Daillant, O. Konovalov, Langmuir 19, 10808 (2003).CrossRefGoogle Scholar
  7. 7.
    K.B. Blodgett, I. Langmuir, Phys. Rev. 51, 964 (1937).ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Petty, Langmuir-Blodgett Films: An Introduction (Cambridge University Press, New York, 1996).Google Scholar
  9. 9.
    I.R. Peterson, J. Phys. D 23, 379 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, Science 277, 1978 (1997).CrossRefGoogle Scholar
  11. 11.
    K. Tollner, R. Popovitz-Biro, M. Lahav, D. Milstein, Science 278, 2100 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    R. Singhal, A. Chaubey, K. Kaneto, W. Takashima, B.D. Malhotra, Biotechnol. Bioeng. 85, 277 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 100, 207404 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    D.K. Schwartz, J. Garnaes, R. Viswanathan, S. Chiruvolu, J.A. Zasadzinski, Phys. Rev. E 47, 1267 (1993).CrossRefGoogle Scholar
  15. 15.
    J.B. Peng, G.T. Barnes, I.R. Gentle, G.J. Foran, J. Phys. Chem. B 104, 5553 (2000).CrossRefGoogle Scholar
  16. 16.
    S. Kundu, A. Datta, S. Hazra, Chem. Phys. Lett. 405, 282 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    S. Milner, J.F. Joanny, P. Pincus, Europhys. Lett. 9, 495 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    M.M. Lipp, K.Y.C. Lee, D.Y. Takamoto, J.A. Zasadzinski, A.J. Waring, Phys. Rev. Lett. 81, 1650 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    C. Fradin, A. Braslau, D. Luzet, M. Alba, C. Gourier, J. Daillant, G. Grübel, G. Vignaud, J.F. Legrand, J. Lal, J.M. Petit, F. Rieutord, Physica B 248, 310 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    H.E. Ries jr., Nature 281, 287 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    C. Ybert, W. Lu, G. Möller, C.M. Knobler, J. Phys. Chem. B 106, 2004 (2002).CrossRefGoogle Scholar
  22. 22.
    S. Kundu, A. Datta, S. Hazra, Phys. Rev. E 73, 051608 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    D. Vaknin, W. Bu, S.K. Satija, A. Travesset, Langmuir 23, 1888 (2007).CrossRefGoogle Scholar
  24. 24.
    K.Y.C. Lee, Annu. Rev. Phys. Chem. 59, 771 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    B. Kumar, K.A. Suresh, S.K. Gupta, S. Kumar, J. Chem. Phys. 133, 044701 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    H.F. Okorn-Schmidt, IBM J. Res. Develop. 43, 351 (1999).CrossRefGoogle Scholar
  27. 27.
    X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic Publishers, New York, 2004).Google Scholar
  28. 28.
    C.-Y. Ruan, V.A. Lobastov, F. Vigliotti, S. Chen, A.H. Zewail, Science 304, 80 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    J.K. Bal, S. Hazra, Phys. Rev. B 79, 155412 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Bal, S. Kundu, S. Hazra, Phys. Rev. B 81, 045404 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    P.L. Silvestrelli, F. Toigo, F. Ancilotto, J. Phys. Chem. B 110, 12022 (2006).CrossRefGoogle Scholar
  32. 32.
    W. Dong, R. Wang, G. Mao, H. Möhwald, Soft Matter 2, 686 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    I.K. Robinson, D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    J. Daillant, A. Gibaud (Editors), X-ray and Neutron Reflectivity: Principles and Applications (Springer, Paris, 1999).Google Scholar
  35. 35.
    J.K. Bal, S. Hazra, Phys. Rev. B 75, 205411 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    L.G. Parratt, Phys. Rev. 95, 359 (1954).ADSCrossRefGoogle Scholar
  37. 37.
    S. Kundu, S. Hazra, S. Banerjee, M.K. Sanyal, S.K. Mandal, S. Chaudhuri, A.K. Pal, J. Phys. D 34, L73 (1998).CrossRefGoogle Scholar
  38. 38.
    I. Horcas, R. Fernndez, J.M. Gwez-Rodrguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    M.J. Bedzyk, W. Gibson, J.A. Golovchenko, J. Vac. Sci. Technol. 20, 634 (1982).ADSCrossRefGoogle Scholar
  40. 40.
    D.K. Schwartz, J. Garnaes, R. Viswanathan, J.A. Zasadzinski, Science 257, 508 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    T. Hanada, M. Kawai, Vacuum 41, 650 (1990).CrossRefGoogle Scholar
  42. 42.
    D. Graf, M. Grundner, D. Muhlhoff, M. Dellith, J. Appl. Phys. 69, 7620 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    S. Xu, P. Xu, M. Ji, X. Liu, M. Ma, J. Zhu, Y. Zhang, J. Mater. Sci. Technol. 9, 437 (1993).Google Scholar
  44. 44.
    N. Takano, N. Hosoda, T. Yamada, T. Osaka, Electrochim. Acta 44, 3743 (1999).CrossRefGoogle Scholar
  45. 45.
    J.K. Bal, S. Kundu, S. Hazra, Chem. Phys. Lett. 500, 90 (2010).ADSCrossRefGoogle Scholar
  46. 46.
    J.K. Bal, S. Kundu, S. Hazra, Mater. Chem. Phys. 134, 549 (2012).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Surface Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Physical Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia

Personalised recommendations