Nonlinear ionic pulses along microtubules

  • D. L. Sekulić
  • B. M. Satarić
  • J. A. Tuszynski
  • M. V. Satarić
Regular Article

Abstract

Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells.

Keywords

Soliton Ionic Current Ionic Cloud Ionic Wave Ladder Network 

References

  1. 1.
    L.A. Amos, Trends Cell Biol. 5, 48 (1995)CrossRefGoogle Scholar
  2. 2.
    G. Matsumoto, M. Ishikawa, A. Tasaki, H. Murofushi, H. Sakai, J. Membr. Biol. 77, 77 (1989)Google Scholar
  3. 3.
    P.K. Hepler, Plant Cell 17, 2142 (2005)CrossRefGoogle Scholar
  4. 4.
    D.H. Chang, P. Wadsworth, P.K. Hepler, J. Cell Sci. 102, 79 (1992)Google Scholar
  5. 5.
    L. Matsson, J. Biol. Phys. 31, 303 (2005)CrossRefGoogle Scholar
  6. 6.
    L. Matsson, J. Phys.: Condens. Matter 21, 502101 (2009)CrossRefGoogle Scholar
  7. 7.
    E. Nogales, H.W. Wang, Curr. Opin. Cell Biol. 18, 179 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Freedman, V. Rezania, A. Priel, E. Carpenter, S.Y. Noskov, J.A. Tuszynski, Phys. Rev. E 81, 051912 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.F. Diaz, I. Barasoain, J.M. Andren, J. Biol. Chem. 278, 8407 (2003)CrossRefGoogle Scholar
  10. 10.
    M.V. Satarić, D.I. Ilić, N. Ralević, J.A. Tuszynski, Eur. Biophys. J. 38, 637 (2009)CrossRefGoogle Scholar
  11. 11.
    M.V. Satarić, D. Sekulić, M. Zivanov, J. Comput. Theor. Nanosci. 7, 2281 (2010)CrossRefGoogle Scholar
  12. 12.
    Z.S. Siwy, M.R. Powell, A. Petrov, E. Kalman, C. Trantmann, R.S. Eisenberg., Nano Lett. 6, 1729 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    W. Im, B. Roux, J. Mol. Biol. 322, 851 (2002)CrossRefGoogle Scholar
  14. 14.
    L. Serrano, J. de la Torre, R.B. Maccioni, Y. Avila, Biochemistry 23, 4675 (1984)CrossRefGoogle Scholar
  15. 15.
    M.V. Satarić, J.A. Tuszynski, Phys. Rev. E 67, 011901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Proc. Natl. Acad. Sci. U.S.A. 98, 10037 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Tuszynski, J.A. Brown, E. Crowford, E.J. Carpenter, M.L.A. Nip, J.M. Dixon, M.V. Satarić, Math. Comput. Modell. 41, 1055 (2005)MATHCrossRefGoogle Scholar
  18. 18.
    G.S. Manning, Rev. Biophys. 2, 179 (1978)CrossRefGoogle Scholar
  19. 19.
    J.A. Tuszynski, A. Priel, J.A. Brown, H.F. Cantiello, J.M. Dixon, Nano and Molecular Electronics Handbook, Electronic and Ionic Conductivities of Microtubules and Actin Filaments: Their Consequences for Cell Signaling and Applications to Bioelectronics (Taylor and Francis, London, 2007)Google Scholar
  20. 20.
    A. Priel, J.A. Tuszynski, H. Cantielo, Molecular Biology of the Cell, Ionic Waves Propagation Along the Dendritic Cytoskeleton as a Signaling Mechanism (Elsevier, 2006)Google Scholar
  21. 21.
    A. Priel, J.A. Tuszynski, EPL 83, 68004 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Tuszynski, S. Portet, J.M. Dixon, C. Luxford, H.F. Cantiello, Biophys. J. 86, 1890 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A. Priel, A.J. Ramos, J.A. Tuszynski, H.F. Contiello, Biophys. J. 90, 4639 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    B. O'Shanghnessy, Q. Yang, Phys. Rev. Lett. 94, 048302 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    I. Minoura, E. Muto, Biophys. J. 90, 3739 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    C. Lin, H.F. Cantiello, Biophys. J. 65, 1371 (1993)CrossRefGoogle Scholar
  27. 27.
    K. Wang, W.J. Rappel, H. Levine, Phys. Biol. 1, 27 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    S. Maxon, J. Viecelli, Phys. Rev. Lett. 32, 4 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    S. Maxon, J. Viecelli, Phys. Fluids 17, 1614 (1974)ADSCrossRefGoogle Scholar
  30. 30.
    T. Yagy, J. Phys. Soc. Jpn. 50, 2737 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Tuszynski, S. Hameroff, M.V. Satarić, B. Tripisova, M.L.A. Nip, J. Theor. Biol. 174, 371 (1995)CrossRefGoogle Scholar
  32. 32.
    L.J. Gagliardi, J. Electrostat. 54, 219 (2002)CrossRefGoogle Scholar
  33. 33.
    T. Duke, J. Phys.: Condens. Matter 15, S1747 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • D. L. Sekulić
    • 1
  • B. M. Satarić
    • 1
  • J. A. Tuszynski
    • 2
    • 3
  • M. V. Satarić
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Oncology, Cross Cancer InstituteUniversity of AlbertaEdmontonCanada
  3. 3.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations