The European Physical Journal E

, Volume 25, Issue 3, pp 291–298 | Cite as

The absence of physical-aging effects on the surface relaxations of rubbed polystyrene

  • C. C. Wong
  • Z. Qin
  • Z. Yang
Regular Article

Abstract.

Extensive experimental results are presented to reveal the relaxations of polystyrene surface deformed by rubbing with a velvet cloth. We found that surface topographic features, such as ditches and ridges created by rubbing, relax at temperatures at about 20° C below the bulk glass transition temperature of the polystyrene for a molecular weight of 442 kg/mol, even though we estimate the Laplace Pressure driving the relaxation to be 1/500 of the yield limit. The relaxation is independent of the thermal history before the rubbing process, and post rubbing thermal history below 55° C . In other words, physical-aging processes at 23° C for up to 7 days and at 50° C for 2 days, which would have drastic effects on the relaxations of bulk polymers, have little effects on the relaxations of rubbed surfaces. This is consistent with the mobility enhancement in the surface layer previously reported in the literature.

PACS.

68.37.Ps Atomic force microscopy (AFM) 68.35.Ja Surface and interface dynamics and vibrations 68.35.Gy Mechanical properties; surface strains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.C.E. Struik, Polymer 29, 1347 (1988).CrossRefGoogle Scholar
  2. 2.
    L.C.E. Struik, Physical aging in amorphous polymers and other materials (Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1978).Google Scholar
  3. 3.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (Wiley, New York, 1980).Google Scholar
  4. 4.
    H.G.H. van Melick, L.E. Govaerta, B. Raas, W.J. Nauta, H.E.H. Meijer, Polymer 44, 1171 (2003).CrossRefGoogle Scholar
  5. 5.
    W.K. Waldron Jr., G.B. McKenna, J. Rheol. 39, 471 (1995).CrossRefADSGoogle Scholar
  6. 6.
    J.M. Caruthers, D.B. Adolf, R.S. Chamber, P. Shrikhande, Polymer 45, 4577 (2004).CrossRefGoogle Scholar
  7. 7.
    F. Doumenc, B. Guerrier, C. Allain, Europhys. Lett. 76, 630 (2006).CrossRefADSGoogle Scholar
  8. 8.
    A. Laschitsch, C. Bouchard, J. Habicht, M. Schimmel, J. Rühe, D. Johannsmann, Macromolecules 32, 1244 (1999).CrossRefGoogle Scholar
  9. 9.
    Y. Huang, D.R. Paul, J. Membrane Sci. 244, 167 (2004).CrossRefGoogle Scholar
  10. 10.
    K.D. Dorkenoo, P.H. Pfromm, J. Polym. Sci. B: Polym. Phys. 37, 2239 (1999).CrossRefGoogle Scholar
  11. 11.
    S. Kawana, R.A.L. Jones, Eur. Phys. J. E 10, 223 (2003).CrossRefGoogle Scholar
  12. 12.
    G.B. DeMaggio, W.E. Frieze, D.W. Gidley, Ming Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1996).CrossRefADSGoogle Scholar
  13. 13.
    F.L. Pratt, T. Lancaster, M.L. Brooks, S.J. Blundell, T. Prokscha, E. Morenzoni, A. Suter, H. Luetkens, R. Khasanov, R. Scheuermann, U. Zimmermann, K. Shinotsuka, H.E. Assender, Phys. Rev. B 72, 121401(R) (2005).CrossRefADSGoogle Scholar
  14. 14.
    J.S. Sharp, J.A. Forrest, Phys. Rev. Lett. 91, 235701 (2003).CrossRefADSGoogle Scholar
  15. 15.
    J.A. Forrest, K. Dalnoki-Veress, J. Stevens, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).CrossRefADSGoogle Scholar
  16. 16.
    S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 21501 (2001).CrossRefADSGoogle Scholar
  17. 17.
    M.Yu. Efremov, E.A. Olson, M. Zhang, Z. Zhang, L.H. Allen, Phys. Rev. Lett. 91, 85703 (2003).CrossRefADSGoogle Scholar
  18. 18.
    C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003).CrossRefADSGoogle Scholar
  19. 19.
    T. Kajiyama, K. Tanaka, N. Satomi, A. Takahara, Sci. Technol. Adv. Mater. 1, 31 (2000).CrossRefGoogle Scholar
  20. 20.
    X. Jiang, C. Zheng Yang, K. Tanaka, A. Takahara, T. Kajiyama, Phys. Lett. A 281, 363 (2001).CrossRefADSGoogle Scholar
  21. 21.
    K. Tanaka, D. Kawaguchi, Y. Yokoe, T. Kajiyama, A. Takahara, S. Tasaki, Polymer 44, 4171 (2003).CrossRefGoogle Scholar
  22. 22.
    J. Erichsen, J. Kanzow, U. Schurmann, K. Dolgner, K. Günther-Schade, T. Strunskus, V. Zaporojtchenko, F. Faupel, Macromolecules 37, 1831 (2004).CrossRefGoogle Scholar
  23. 23.
    J.H. Teichroeb, J.A. Forrest, Phys. Rev. Lett. 91, 16104 (2003).CrossRefADSGoogle Scholar
  24. 24.
    T. Kerle, Z. Lin, H.-C. Kim, T.P. Russell, Macromolecules 34, 3484 (2001).CrossRefGoogle Scholar
  25. 25.
    S.A. Hutcheson, G.B. McKenna, Phys. Rev. Lett. 94, 076103 (2005). CrossRefADSGoogle Scholar
  26. 26.
    P.A. O'Connell, G.B. McKenna, Polymer Physics Workshop 2006, Suzhou, China.Google Scholar
  27. 27.
    Z. Qin, Y. Chen, K.P. Shiu, Z. Yang, Macromolecules 37, 3378 (2004).CrossRefGoogle Scholar
  28. 28.
    Y. Liu, T.P. Russel, M.G. Samant, J. Stohr, H.R. Brown, A. Cossy-Favre, J. Diaz, Macromolecules 30, 7768 (1999).CrossRefGoogle Scholar
  29. 29.
    D.M.G. Agra, A.D. Schwab, J.-H. Kim, S. Kumar, A. Dhinojwala, Europhys. Lett. 51, 655 (2000).CrossRefADSGoogle Scholar
  30. 30.
    A.D. Schwab, B. Acharya, S. Kumar, A. Dhinojwala, Mod. Phys. Lett. 16, 415 (2002).CrossRefADSGoogle Scholar
  31. 31.
    K.P. Shiu, Z. Qin, Z. Yang, Eur. Phys. J. E 17, 139 (2005).CrossRefGoogle Scholar
  32. 32.
    A.D. Schwab, A. Dhinojwala, Phys. Rev. E 67, 21802 (2003).CrossRefADSGoogle Scholar
  33. 33.
    W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995).Google Scholar
  34. 34.
    G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Nature Materials 4, 754 (2005).CrossRefADSGoogle Scholar
  35. 35.
    S. Wu, Polymer Interface and Adhesion (Marcel Dekker, Inc., New York, Basel, 1982) p. 68--70.Google Scholar
  36. 36.
    G. Reitera, Eur. Phys. J. E 8, 251 (2002).CrossRefGoogle Scholar
  37. 37.
    J. Rault, J. Phys.: Condens. Matter 15, S1193 (2003).Google Scholar
  38. 38.
    O. Araki, T. Shimamoto, T. Yamamoto, T. Masuda, Polymer 42, 4433 (2001).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • C. C. Wong
    • 1
  • Z. Qin
    • 1
  • Z. Yang
    • 1
  1. 1.Department of PhysicsThe Hong Kong University of Science and Technology, Clearwater BayKowloonHong Kong

Personalised recommendations