Advertisement

The European Physical Journal E

, Volume 23, Issue 4, pp 413–429 | Cite as

Strength and failure of cemented granular matter

  • V. Topin
  • J. -Y. Delenne
  • F. Radjaı
  • L. Brendel
  • F. Mabille
Regular Article

Abstract.

Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.

PACS.

45.70.-n Granular systems 83.80.Fg Granular solids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.J. Merchant, D.E. Macphee, H.W. Chandler, R.J. Henderson, Cem. Concr. Res. 31, 1873 (2001).CrossRefGoogle Scholar
  2. 2.
    E. Schlangen, J.G.M. van Mier, Cem. Concr. Comp. 14, 105 (1992).CrossRefGoogle Scholar
  3. 3.
    F. de Larrard, A. Belloc, Am. Concr. Inst. Mater. J. 94, 417 (1997).Google Scholar
  4. 4.
    A. Benhamida, F. Bouchelaghem, H. Dumontet, Int. J. Numer. Anal. Methods Geomech. 29, 187 (2005).MATHCrossRefGoogle Scholar
  5. 5.
    H. Tan, Y. Huang, C. Liu, G. Ravichandran, H. Inglis, P. Geubelle, Int. J. Solids Struct. 44, 1809 (2007).MATHCrossRefGoogle Scholar
  6. 6.
    E.J. Tarbuck, F.K. Lutgens, Earth -- An Introduction to Physical Geology (Pearson Education, New Jersey, 2005).Google Scholar
  7. 7.
    Y. Pomeranz (Editor), Wheat: Chemistry and technology (AACC, St Paul USA, 1988).Google Scholar
  8. 8.
    W. Atwell, Wheat Flour (AACC, St Paul USA, 2001).Google Scholar
  9. 9.
    K. Johnson, K. Kendall, A. Roberts, Proc. R. Soc. London, Ser. A 324, 301 (1971).Google Scholar
  10. 10.
    K. Kendall, N. Alford, J. Birchall, Brit. Ceram. Proc. 37, 255 (1986).Google Scholar
  11. 11.
    K. Johnson, Contact Mechanics (University Press, Cambridge, 1999).Google Scholar
  12. 12.
    A. Castellanos, Adv. Phys. 54, 263 (2005).CrossRefADSGoogle Scholar
  13. 13.
    C.W. Zhou, W. Yang, D.N. Fang, Theor. Appl. Fract. Mech. 41, 311 (2004).CrossRefGoogle Scholar
  14. 14.
    H. Tan, Y. Huang, C. Liu, P. Geubelle, Int. J. Plasticity 21, 1890 (2005).MATHCrossRefGoogle Scholar
  15. 15.
    D. Elata, J. Dvorkin, Mech. Mater. 23, 147 (1996).CrossRefGoogle Scholar
  16. 16.
    F. Sienkiewicz, A. Shukla, M. Sadd, Z. Zhang, J. Dvorkin, Mech. Mater. 22, 43 (1996).CrossRefGoogle Scholar
  17. 17.
    L. Zhonghua, S. Schmauder, Comput. Mater. Sci. 18, 295 (2000).CrossRefGoogle Scholar
  18. 18.
    O. Buyukozturk, B. Hearing, Int. J. Solids Struct. 35, 4055 (1998).CrossRefGoogle Scholar
  19. 19.
    G. Lilliu, J.G.M. Van Mier, Eng. Fract. Mech. 70, 927 (2003).CrossRefGoogle Scholar
  20. 20.
    T.C. Halsey, A.J. Levine, Phys. Rev. Lett. 80, 3141 (1998).CrossRefADSGoogle Scholar
  21. 21.
    T. Mikami, H. Kamiya, M. Horio, Chem. Eng. Sci. 53, 1927 (1998).CrossRefGoogle Scholar
  22. 22.
    N. Fraysse, H. Thome, L. Petit, Eur. Phys. J. B 11, 615 (1999).CrossRefADSGoogle Scholar
  23. 23.
    L. Bocquet, E. Charlaix, F. Restagno, C. R. Phys. 3, 207 (2002).CrossRefADSGoogle Scholar
  24. 24.
    F. Soulié, F. Cherblanc, M.E. Youssoufi, C. Saix, Int. J. Numer. Anal. Methods Geomech. 30, 213 (2006).CrossRefMATHGoogle Scholar
  25. 25.
    V. Richefeu, M.S.E. Youssoufi, F. Radja\"i, Phys. Rev. E 73, 051304 (2006).CrossRefADSGoogle Scholar
  26. 26.
    K. Barlow, M. Buttrose, D. Simmonds, M. Vesk, Cereal Chem. 50, 443 (1973).Google Scholar
  27. 27.
    J. Dexter, B. Marchylo, A. Macgregor, R. Tkachuk, J. Cereal Sci. 10, 19 (1989).CrossRefGoogle Scholar
  28. 28.
    B.J. Dobraszczyk, J. Cereal Sci. 19, 273 (1994).CrossRefGoogle Scholar
  29. 29.
    G. Glenn, R. Johnston, Food Struct. 11, 187 (1992).Google Scholar
  30. 30.
    G. Glenn, R. Saunders, Cereal Chem. 67, 176 (1990).Google Scholar
  31. 31.
    C. Morris, Plant Mol. Biol. 48, 633 (2002).CrossRefGoogle Scholar
  32. 32.
    O. Piot, J.C. Autran, M. Manfait, J. Cereal Sci. 32, 57 (2000).CrossRefGoogle Scholar
  33. 33.
    K.M. Turnbull, S. Rahman, J. Cereal Sci. 36, 327 (2002).CrossRefGoogle Scholar
  34. 34.
    F. de Larrard, Concrete Mixture Proportioning. A scientific Approach (E & FN SPON. London, 1991).Google Scholar
  35. 35.
    Z. Hashin, P.J.M. Monteiro, Cem. Concr. Res. 32, 1291 (2002).CrossRefGoogle Scholar
  36. 36.
    H.J. Herrmann, S. Roux (Editors), Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990).Google Scholar
  37. 37.
    A.J. Liu, S.R. Nagel (Editors), Jamming And Rheology (Taylor and Francis, New York, 2001).Google Scholar
  38. 38.
    G.K. Hu, G. Guo, D. Baptiste, Comput. Mater. Sci. 9, 420 (1998).CrossRefGoogle Scholar
  39. 39.
    S. Torquato, Random Heterogeneous Materials -- Microstructure and Macroscopic Properties (Springer-Verlag New York, 2002).Google Scholar
  40. 40.
    L. Mishnaevsky jr., K. Derrien, D. Baptiste, Comput. Sci. Technol. 64, 1805 (2004).CrossRefGoogle Scholar
  41. 41.
    V. Renaud, D. Kondo, J.P. Henry, Comput. Mater. Sci. 5, 227 (1996).CrossRefGoogle Scholar
  42. 42.
    L. Dormieux, E. Lemarchand, D. Kondo, E. Fairbairn, Mater. Struct. 37, 31 (2004).CrossRefGoogle Scholar
  43. 43.
    M. Gologanu, J.B. Leblond, J. Devaux, Int. J. Solids Struct. 38, 5595 (2001).MATHCrossRefGoogle Scholar
  44. 44.
    M. Gologanu, J.B. Leblond, G. Perrin, J. Devaux, Int. J. Solids Struct. 38, 5581 (2001).MATHCrossRefGoogle Scholar
  45. 45.
    D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, 2000).Google Scholar
  46. 46.
    X.H. Guo, F. Tin-Loi, H. Li, Cem. Concr. Res. 29, 1055 (1999).CrossRefGoogle Scholar
  47. 47.
    K. Derrien, J. Fitoussi, G. Guo, D. Baptiste, Comput. Methods Appl. Mech. Eng. 185, 93 (2000).MATHCrossRefGoogle Scholar
  48. 48.
    T. Rabczuk, J. Akkermann, J. Eibl, Int. J. Solids Struct. 42, 1327 (2005).CrossRefMATHGoogle Scholar
  49. 49.
    C. Nadot-Martin, H. Trumel, A. Dragon, Eur. J. Mech. - A/Solids 22, 89 (2003).MATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    J. Fitoussi, G. Guo, D. Baptiste, Comput. Sci. Technol. 58, 759 (1998).CrossRefGoogle Scholar
  51. 51.
    A. Delaplace, G. Pijaudier-Cabot, S. Roux, J. Mech. Phys. Solids 44, 99 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    S. Roux, Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990), Chapt. Continuum and discrete description of elasticity and other rheological behavior, pp. 87--114. Google Scholar
  53. 53.
    E. Schlangen, E.J. Garboczi, Eng. Fract. Mech. 57, 319 (1997).CrossRefGoogle Scholar
  54. 54.
    J.G.M. Van Mier, B.M. Chiaia, A. Vervuurt, Comput. Methods Appl. Mech. Eng. 142, 189 (1997).MATHCrossRefGoogle Scholar
  55. 55.
    C. Chang, T. Wang, L. Sluys, J.V. Mier, Eng. Fract. Mech. 69, 1959 (2002).CrossRefADSGoogle Scholar
  56. 56.
    C.S. Chang, T.K. Wang, L.J. Sluys, J.G.M. Van Mier, Eng. Fract. Mech. 69, 1941 (2002).CrossRefADSGoogle Scholar
  57. 57.
    B.M. Chiaia, A. Vervuurt, J.G.M. Van Mier, Eng. Fract. Mech. 57, 301 (1997).CrossRefGoogle Scholar
  58. 58.
    S. Feng, M.F. Thorpe, E. Garboczi, Phys. Rev. B 31, 276 (1985).CrossRefADSGoogle Scholar
  59. 59.
    H. Gao, P. Klein, J. Mech. Phys. Solids 46, 187 (1998).MATHCrossRefADSGoogle Scholar
  60. 60.
    E.P. Prado, J.G.M. van Mier, Eng. Fract. Mech. 70, 1793 (2003).CrossRefGoogle Scholar
  61. 61.
    J.G.M. Van Mier, M.R.A. Van Vliet, Constr. Build. Mater. 13, 3 (1999).CrossRefGoogle Scholar
  62. 62.
    J.G.M. Van Mier, M.R.A. van Vliet, T.K. Wang, Mech. Mater. 34, 705 (2002).CrossRefGoogle Scholar
  63. 63.
    H.J. Vogel, H. Hoffmann, A. Leopold, K. Roth, Geoderma 125, 213 (2005).CrossRefGoogle Scholar
  64. 64.
    H.J. Vogel, H. Hoffmann, K. Roth, Geoderma 125, 203 (2005).CrossRefGoogle Scholar
  65. 65.
    J.J. Moreau, Eur. J. Mech. A/Solids Suppl. 13, 93 (1994).MATHMathSciNetGoogle Scholar
  66. 66.
    F. Radja\"i, D.E. Wolf, M. Jean, J.J. Moreau, Phys. Rev. Lett. 80, 61 (1998).CrossRefADSGoogle Scholar
  67. 67.
    D.M. Mueth, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 3164 (1998).CrossRefADSGoogle Scholar
  68. 68.
    T.S. Majmudar, R.P. Behringer, Nature 435, 1079 (2005) ISSN 0028-0836.CrossRefADSGoogle Scholar
  69. 69.
    F. Radja\"i, M. Jean, J.J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996).CrossRefADSGoogle Scholar
  70. 70.
    Z. Jendli, J. Fitoussi, F. Meraghni, D. Baptiste, Comput. Sci. Technol. 65, 387 (2005).CrossRefGoogle Scholar
  71. 71.
    J.J. Moreau, Numerical Investigation of Shear Zones in Granular Materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247.Google Scholar
  72. 72.
    L. Staron, F. Radja\"i, J.P. Vilotte, Eur. Phys. J. E 18, 311 (2005).CrossRefGoogle Scholar
  73. 73.
    M. Sahimi, Heterogeneous Materials II (Springer, New York, 2003).Google Scholar
  74. 74.
    M.Y. He, J.W. Hutchinson, Int. J. Solids Struct. 25, 1053 (1989).CrossRefGoogle Scholar
  75. 75.
    Z.P. Bazant, Introduction aux effets d'échelle sur la résistance des structures (Lavoisier, Paris, 2004).Google Scholar
  76. 76.
    W.H. Press, B. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing (Fortran Numerical Recipes, Vol. 2) (Cambridge University Press, Cambridge, 1996).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • V. Topin
    • 1
  • J. -Y. Delenne
    • 1
  • F. Radjaı
    • 1
  • L. Brendel
    • 2
  • F. Mabille
    • 3
  1. 1.LMGCCNRS-Université Montpellier 2Montpellier cedex 5France
  2. 2.Theoretical Physics, FB 10Gerhard-Mercator-UniversityDuisburgGermany
  3. 3.IATECNRS-INRAMontpellier cedex 1France

Personalised recommendations