Skip to main content
Log in

Strength and failure of cemented granular matter

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.J. Merchant, D.E. Macphee, H.W. Chandler, R.J. Henderson, Cem. Concr. Res. 31, 1873 (2001).

    Article  Google Scholar 

  2. E. Schlangen, J.G.M. van Mier, Cem. Concr. Comp. 14, 105 (1992).

    Article  Google Scholar 

  3. F. de Larrard, A. Belloc, Am. Concr. Inst. Mater. J. 94, 417 (1997).

    Google Scholar 

  4. A. Benhamida, F. Bouchelaghem, H. Dumontet, Int. J. Numer. Anal. Methods Geomech. 29, 187 (2005).

    Article  MATH  Google Scholar 

  5. H. Tan, Y. Huang, C. Liu, G. Ravichandran, H. Inglis, P. Geubelle, Int. J. Solids Struct. 44, 1809 (2007).

    Article  MATH  Google Scholar 

  6. E.J. Tarbuck, F.K. Lutgens, Earth -- An Introduction to Physical Geology (Pearson Education, New Jersey, 2005).

  7. Y. Pomeranz (Editor), Wheat: Chemistry and technology (AACC, St Paul USA, 1988).

  8. W. Atwell, Wheat Flour (AACC, St Paul USA, 2001).

  9. K. Johnson, K. Kendall, A. Roberts, Proc. R. Soc. London, Ser. A 324, 301 (1971).

    Google Scholar 

  10. K. Kendall, N. Alford, J. Birchall, Brit. Ceram. Proc. 37, 255 (1986).

    Google Scholar 

  11. K. Johnson, Contact Mechanics (University Press, Cambridge, 1999).

  12. A. Castellanos, Adv. Phys. 54, 263 (2005).

    Article  ADS  Google Scholar 

  13. C.W. Zhou, W. Yang, D.N. Fang, Theor. Appl. Fract. Mech. 41, 311 (2004).

    Article  Google Scholar 

  14. H. Tan, Y. Huang, C. Liu, P. Geubelle, Int. J. Plasticity 21, 1890 (2005).

    Article  MATH  Google Scholar 

  15. D. Elata, J. Dvorkin, Mech. Mater. 23, 147 (1996).

    Article  Google Scholar 

  16. F. Sienkiewicz, A. Shukla, M. Sadd, Z. Zhang, J. Dvorkin, Mech. Mater. 22, 43 (1996).

    Article  Google Scholar 

  17. L. Zhonghua, S. Schmauder, Comput. Mater. Sci. 18, 295 (2000).

    Article  Google Scholar 

  18. O. Buyukozturk, B. Hearing, Int. J. Solids Struct. 35, 4055 (1998).

    Article  Google Scholar 

  19. G. Lilliu, J.G.M. Van Mier, Eng. Fract. Mech. 70, 927 (2003).

    Article  Google Scholar 

  20. T.C. Halsey, A.J. Levine, Phys. Rev. Lett. 80, 3141 (1998).

    Article  ADS  Google Scholar 

  21. T. Mikami, H. Kamiya, M. Horio, Chem. Eng. Sci. 53, 1927 (1998).

    Article  Google Scholar 

  22. N. Fraysse, H. Thome, L. Petit, Eur. Phys. J. B 11, 615 (1999).

    Article  ADS  Google Scholar 

  23. L. Bocquet, E. Charlaix, F. Restagno, C. R. Phys. 3, 207 (2002).

    Article  ADS  Google Scholar 

  24. F. Soulié, F. Cherblanc, M.E. Youssoufi, C. Saix, Int. J. Numer. Anal. Methods Geomech. 30, 213 (2006).

    Article  MATH  Google Scholar 

  25. V. Richefeu, M.S.E. Youssoufi, F. Radja\"i, Phys. Rev. E 73, 051304 (2006).

    Article  ADS  Google Scholar 

  26. K. Barlow, M. Buttrose, D. Simmonds, M. Vesk, Cereal Chem. 50, 443 (1973).

    Google Scholar 

  27. J. Dexter, B. Marchylo, A. Macgregor, R. Tkachuk, J. Cereal Sci. 10, 19 (1989).

    Article  Google Scholar 

  28. B.J. Dobraszczyk, J. Cereal Sci. 19, 273 (1994).

    Article  Google Scholar 

  29. G. Glenn, R. Johnston, Food Struct. 11, 187 (1992).

    Google Scholar 

  30. G. Glenn, R. Saunders, Cereal Chem. 67, 176 (1990).

    Google Scholar 

  31. C. Morris, Plant Mol. Biol. 48, 633 (2002).

    Article  Google Scholar 

  32. O. Piot, J.C. Autran, M. Manfait, J. Cereal Sci. 32, 57 (2000).

    Article  Google Scholar 

  33. K.M. Turnbull, S. Rahman, J. Cereal Sci. 36, 327 (2002).

    Article  Google Scholar 

  34. F. de Larrard, Concrete Mixture Proportioning. A scientific Approach (E & FN SPON. London, 1991).

  35. Z. Hashin, P.J.M. Monteiro, Cem. Concr. Res. 32, 1291 (2002).

    Article  Google Scholar 

  36. H.J. Herrmann, S. Roux (Editors), Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990).

  37. A.J. Liu, S.R. Nagel (Editors), Jamming And Rheology (Taylor and Francis, New York, 2001).

  38. G.K. Hu, G. Guo, D. Baptiste, Comput. Mater. Sci. 9, 420 (1998).

    Article  Google Scholar 

  39. S. Torquato, Random Heterogeneous Materials -- Microstructure and Macroscopic Properties (Springer-Verlag New York, 2002).

  40. L. Mishnaevsky jr., K. Derrien, D. Baptiste, Comput. Sci. Technol. 64, 1805 (2004).

    Article  Google Scholar 

  41. V. Renaud, D. Kondo, J.P. Henry, Comput. Mater. Sci. 5, 227 (1996).

    Article  Google Scholar 

  42. L. Dormieux, E. Lemarchand, D. Kondo, E. Fairbairn, Mater. Struct. 37, 31 (2004).

    Article  Google Scholar 

  43. M. Gologanu, J.B. Leblond, J. Devaux, Int. J. Solids Struct. 38, 5595 (2001).

    Article  MATH  Google Scholar 

  44. M. Gologanu, J.B. Leblond, G. Perrin, J. Devaux, Int. J. Solids Struct. 38, 5581 (2001).

    Article  MATH  Google Scholar 

  45. D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, 2000).

  46. X.H. Guo, F. Tin-Loi, H. Li, Cem. Concr. Res. 29, 1055 (1999).

    Article  Google Scholar 

  47. K. Derrien, J. Fitoussi, G. Guo, D. Baptiste, Comput. Methods Appl. Mech. Eng. 185, 93 (2000).

    Article  MATH  Google Scholar 

  48. T. Rabczuk, J. Akkermann, J. Eibl, Int. J. Solids Struct. 42, 1327 (2005).

    Article  MATH  Google Scholar 

  49. C. Nadot-Martin, H. Trumel, A. Dragon, Eur. J. Mech. - A/Solids 22, 89 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. J. Fitoussi, G. Guo, D. Baptiste, Comput. Sci. Technol. 58, 759 (1998).

    Article  Google Scholar 

  51. A. Delaplace, G. Pijaudier-Cabot, S. Roux, J. Mech. Phys. Solids 44, 99 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. S. Roux, Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990), Chapt. Continuum and discrete description of elasticity and other rheological behavior, pp. 87--114.

  53. E. Schlangen, E.J. Garboczi, Eng. Fract. Mech. 57, 319 (1997).

    Article  Google Scholar 

  54. J.G.M. Van Mier, B.M. Chiaia, A. Vervuurt, Comput. Methods Appl. Mech. Eng. 142, 189 (1997).

    Article  MATH  Google Scholar 

  55. C. Chang, T. Wang, L. Sluys, J.V. Mier, Eng. Fract. Mech. 69, 1959 (2002).

    Article  ADS  Google Scholar 

  56. C.S. Chang, T.K. Wang, L.J. Sluys, J.G.M. Van Mier, Eng. Fract. Mech. 69, 1941 (2002).

    Article  ADS  Google Scholar 

  57. B.M. Chiaia, A. Vervuurt, J.G.M. Van Mier, Eng. Fract. Mech. 57, 301 (1997).

    Article  Google Scholar 

  58. S. Feng, M.F. Thorpe, E. Garboczi, Phys. Rev. B 31, 276 (1985).

    Article  ADS  Google Scholar 

  59. H. Gao, P. Klein, J. Mech. Phys. Solids 46, 187 (1998).

    Article  MATH  ADS  Google Scholar 

  60. E.P. Prado, J.G.M. van Mier, Eng. Fract. Mech. 70, 1793 (2003).

    Article  Google Scholar 

  61. J.G.M. Van Mier, M.R.A. Van Vliet, Constr. Build. Mater. 13, 3 (1999).

    Article  Google Scholar 

  62. J.G.M. Van Mier, M.R.A. van Vliet, T.K. Wang, Mech. Mater. 34, 705 (2002).

    Article  Google Scholar 

  63. H.J. Vogel, H. Hoffmann, A. Leopold, K. Roth, Geoderma 125, 213 (2005).

    Article  Google Scholar 

  64. H.J. Vogel, H. Hoffmann, K. Roth, Geoderma 125, 203 (2005).

    Article  Google Scholar 

  65. J.J. Moreau, Eur. J. Mech. A/Solids Suppl. 13, 93 (1994).

    MATH  MathSciNet  Google Scholar 

  66. F. Radja\"i, D.E. Wolf, M. Jean, J.J. Moreau, Phys. Rev. Lett. 80, 61 (1998).

    Article  ADS  Google Scholar 

  67. D.M. Mueth, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 3164 (1998).

    Article  ADS  Google Scholar 

  68. T.S. Majmudar, R.P. Behringer, Nature 435, 1079 (2005) ISSN 0028-0836.

    Article  ADS  Google Scholar 

  69. F. Radja\"i, M. Jean, J.J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996).

    Article  ADS  Google Scholar 

  70. Z. Jendli, J. Fitoussi, F. Meraghni, D. Baptiste, Comput. Sci. Technol. 65, 387 (2005).

    Article  Google Scholar 

  71. J.J. Moreau, Numerical Investigation of Shear Zones in Granular Materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247.

  72. L. Staron, F. Radja\"i, J.P. Vilotte, Eur. Phys. J. E 18, 311 (2005).

    Article  Google Scholar 

  73. M. Sahimi, Heterogeneous Materials II (Springer, New York, 2003).

  74. M.Y. He, J.W. Hutchinson, Int. J. Solids Struct. 25, 1053 (1989).

    Article  Google Scholar 

  75. Z.P. Bazant, Introduction aux effets d'échelle sur la résistance des structures (Lavoisier, Paris, 2004).

  76. W.H. Press, B. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing (Fortran Numerical Recipes, Vol. 2) (Cambridge University Press, Cambridge, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Topin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topin, V., Delenne, J.Y., Radjaı, F. et al. Strength and failure of cemented granular matter. Eur. Phys. J. E 23, 413–429 (2007). https://doi.org/10.1140/epje/i2007-10201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10201-9

PACS.

Navigation