Skip to main content
Log in

Colloidal particles at a nematic-isotropic interface: Effects of confinement

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on particle mass, size, and interface velocity (J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002)). If liquid crystal is sandwiched between two substrates, the interface takes a wedge-like shape, accommodating the interface-substrate contact angle and minimizing the director distortions on its nematic side. Correspondingly, particles move along complex trajectories: they are first captured by the interface and then “glide” towards its vertex point. Our experiments quantify this scenario, and numerical minimization of the Landau-de Gennes free energy allows for a qualitative description of the interfacial structure and the drag force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zehner, K. Amundson, A. Knaian, B. Zion, M. Johnson, SID 03 Digest (2003) p. 842.

  2. M. Ogawa, T. Takahashi, S. Saito, Y. Toko, Y. Iwakura, K. Kobayashi, T. Akahane, SID 03 Digest (2003) p. 584.

  3. H.A. Pohl, J. Appl. Phys. 22, 869 (1951).

    Article  ADS  Google Scholar 

  4. H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).

  5. G.H. Markx, P.A. Dyda, R. Pethig, J. Biotechnol. 51, 175 (1996).

    Article  Google Scholar 

  6. M. Washizu, O. Kurosawa, IEEE Trans. Ind. Appl. 26, 1165 (1990).

    Article  Google Scholar 

  7. M. Washizu, J. Electrost. 25, 109 (1990).

    Article  Google Scholar 

  8. H. Morgan, M.P. Hughes, N.G. Green, Biophys. J. 77, 516 (1999).

    Article  Google Scholar 

  9. K. Yoshinaga, M. Chiyoda, A. Yoneda, H. Nishida, M. Komatsu, Colloid Polym. Sci. 277, 479 (1999).

    Article  Google Scholar 

  10. P.A. Kralchevsky, N.D. Denkov, V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura, K. Nagayama, J. Phys. Condens. Matter 6, A395 (1994).

  11. J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002).

    Article  ADS  Google Scholar 

  12. P. Oswald, J. Bechhoefer, A. Libchaber, Phys. Rev. Lett. 58, 2318 (1987).

    Article  ADS  Google Scholar 

  13. J. Ignes-Mullol, J. Baudry, L. Lejcek, P. Oswald, Phys. Rev. E 59, 568 (1999).

    Article  ADS  Google Scholar 

  14. L. Blinov, V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).

  15. Y.A. Reznikov, V.Y. Reshetnyak, O.V. Yaroshchuk, Zh. Eksp. Teor. Fiz. 101, 1529 (1992).

    Google Scholar 

  16. B. Wen, J.H. Kim, H. Yokoyama, C. Rosenblatt, Phys. Rev. E 66, 041502 (2002).

    Article  ADS  Google Scholar 

  17. J. Bechhoefer, A.J. Simon, A. Libchaber, P. Oswald, Phys. Rev. A 40, 2042 (1989).

    Article  ADS  Google Scholar 

  18. S. Faetti, V. Palleschi, Phys. Rev. A 30, 3241 (1984).

    Article  ADS  Google Scholar 

  19. O.D. Lavrentovich, Phys. Rev. A 46, R722 (1992).

  20. I.M. Kuli\`c, D. Andrienko, M. Deserno, Europhys. Lett. 67, 418 (2004).

    Article  ADS  Google Scholar 

  21. H. Stark, Eur. Phys. J. B 10, 311 (1999).

    Article  ADS  Google Scholar 

  22. A. Rudinger, H. Stark, Liq. Cryst. 26, 753 (1999).

    Article  Google Scholar 

  23. D. Voloschenko, O.P. Pishnyak, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 65, 060701 (2002).

    Article  ADS  Google Scholar 

  24. P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).

    Article  ADS  Google Scholar 

  25. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1995).

  26. M. Stephen, J. Straley, Rev. Mod. Phys. 46, 617 (1974).

    Article  ADS  Google Scholar 

  27. H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978).

    Google Scholar 

  28. S. Kralj, S. Žumer, D.W. Allender, Phys. Rev. A 43, 2943 (1991).

    Article  ADS  Google Scholar 

  29. M. Tasinkevych, N.M. Silvestre, P. Patrício, M.M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).

    Article  Google Scholar 

  30. P. Patrício, M. Tasinkevych, M.M. Telo da Gama, Eur. Phys. J. E 7, 117 (2002).

    Article  Google Scholar 

  31. D. Andrienko, M. Tasinkevych, P. Patricio, M.M.T. da Gama, Phys. Rev. E 69, 021706 (2004).

    Article  ADS  Google Scholar 

  32. N.M. Silvestre, P. Patrício, M. Tasinkevych, D. Andrienko, M.M. Telo da Gama, J. Phys. Condens. Matter 16, S1921 (2004).

  33. D. Andrienko, M. Tasinkevych, S. Dietrich, Europhys. Lett. 70, 95 (2005).

    Article  ADS  Google Scholar 

  34. J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Mol. Cryst. Liq. Cryst. 410, 611 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tasinkevych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J.L., Zhang, K., Glushchenko, A. et al. Colloidal particles at a nematic-isotropic interface: Effects of confinement. Eur. Phys. J. E 20, 237–242 (2006). https://doi.org/10.1140/epje/i2006-10017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10017-1

PACS.

Navigation