Advertisement

The European Physical Journal E

, Volume 20, Issue 2, pp 237–242 | Cite as

Colloidal particles at a nematic-isotropic interface: Effects of confinement

  • J. L. West
  • K. Zhang
  • A. Glushchenko
  • D. Andrienko
  • M. Tasinkevych
  • Y. Reznikov
Regular Article

Abstract.

When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on particle mass, size, and interface velocity (J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002)). If liquid crystal is sandwiched between two substrates, the interface takes a wedge-like shape, accommodating the interface-substrate contact angle and minimizing the director distortions on its nematic side. Correspondingly, particles move along complex trajectories: they are first captured by the interface and then “glide” towards its vertex point. Our experiments quantify this scenario, and numerical minimization of the Landau-de Gennes free energy allows for a qualitative description of the interfacial structure and the drag force.

PACS.

61.30.Jf Defects in liquid crystals 64.70.Md Transitions in liquid crystals 82.70.-y Disperse systems; complex fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zehner, K. Amundson, A. Knaian, B. Zion, M. Johnson, SID 03 Digest (2003) p. 842.Google Scholar
  2. 2.
    M. Ogawa, T. Takahashi, S. Saito, Y. Toko, Y. Iwakura, K. Kobayashi, T. Akahane, SID 03 Digest (2003) p. 584.Google Scholar
  3. 3.
    H.A. Pohl, J. Appl. Phys. 22, 869 (1951).CrossRefADSGoogle Scholar
  4. 4.
    H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).Google Scholar
  5. 5.
    G.H. Markx, P.A. Dyda, R. Pethig, J. Biotechnol. 51, 175 (1996).CrossRefGoogle Scholar
  6. 6.
    M. Washizu, O. Kurosawa, IEEE Trans. Ind. Appl. 26, 1165 (1990).CrossRefGoogle Scholar
  7. 7.
    M. Washizu, J. Electrost. 25, 109 (1990).CrossRefGoogle Scholar
  8. 8.
    H. Morgan, M.P. Hughes, N.G. Green, Biophys. J. 77, 516 (1999).CrossRefGoogle Scholar
  9. 9.
    K. Yoshinaga, M. Chiyoda, A. Yoneda, H. Nishida, M. Komatsu, Colloid Polym. Sci. 277, 479 (1999).CrossRefGoogle Scholar
  10. 10.
    P.A. Kralchevsky, N.D. Denkov, V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura, K. Nagayama, J. Phys. Condens. Matter 6, A395 (1994). Google Scholar
  11. 11.
    J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002).CrossRefADSGoogle Scholar
  12. 12.
    P. Oswald, J. Bechhoefer, A. Libchaber, Phys. Rev. Lett. 58, 2318 (1987).CrossRefADSGoogle Scholar
  13. 13.
    J. Ignes-Mullol, J. Baudry, L. Lejcek, P. Oswald, Phys. Rev. E 59, 568 (1999).CrossRefADSGoogle Scholar
  14. 14.
    L. Blinov, V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).Google Scholar
  15. 15.
    Y.A. Reznikov, V.Y. Reshetnyak, O.V. Yaroshchuk, Zh. Eksp. Teor. Fiz. 101, 1529 (1992).Google Scholar
  16. 16.
    B. Wen, J.H. Kim, H. Yokoyama, C. Rosenblatt, Phys. Rev. E 66, 041502 (2002).CrossRefADSGoogle Scholar
  17. 17.
    J. Bechhoefer, A.J. Simon, A. Libchaber, P. Oswald, Phys. Rev. A 40, 2042 (1989).CrossRefADSGoogle Scholar
  18. 18.
    S. Faetti, V. Palleschi, Phys. Rev. A 30, 3241 (1984).CrossRefADSGoogle Scholar
  19. 19.
    O.D. Lavrentovich, Phys. Rev. A 46, R722 (1992).Google Scholar
  20. 20.
    I.M. Kuli\`c, D. Andrienko, M. Deserno, Europhys. Lett. 67, 418 (2004).CrossRefADSGoogle Scholar
  21. 21.
    H. Stark, Eur. Phys. J. B 10, 311 (1999).CrossRefADSGoogle Scholar
  22. 22.
    A. Rudinger, H. Stark, Liq. Cryst. 26, 753 (1999).CrossRefGoogle Scholar
  23. 23.
    D. Voloschenko, O.P. Pishnyak, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 65, 060701 (2002).CrossRefADSGoogle Scholar
  24. 24.
    P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).CrossRefADSGoogle Scholar
  25. 25.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1995).Google Scholar
  26. 26.
    M. Stephen, J. Straley, Rev. Mod. Phys. 46, 617 (1974).CrossRefADSGoogle Scholar
  27. 27.
    H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978).Google Scholar
  28. 28.
    S. Kralj, S. Žumer, D.W. Allender, Phys. Rev. A 43, 2943 (1991).CrossRefADSGoogle Scholar
  29. 29.
    M. Tasinkevych, N.M. Silvestre, P. Patrício, M.M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).CrossRefGoogle Scholar
  30. 30.
    P. Patrício, M. Tasinkevych, M.M. Telo da Gama, Eur. Phys. J. E 7, 117 (2002).CrossRefGoogle Scholar
  31. 31.
    D. Andrienko, M. Tasinkevych, P. Patricio, M.M.T. da Gama, Phys. Rev. E 69, 021706 (2004).CrossRefADSGoogle Scholar
  32. 32.
    N.M. Silvestre, P. Patrício, M. Tasinkevych, D. Andrienko, M.M. Telo da Gama, J. Phys. Condens. Matter 16, S1921 (2004).Google Scholar
  33. 33.
    D. Andrienko, M. Tasinkevych, S. Dietrich, Europhys. Lett. 70, 95 (2005).CrossRefADSGoogle Scholar
  34. 34.
    J.L. West, A. Glushchenko, G.X. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Mol. Cryst. Liq. Cryst. 410, 611 (2004).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • J. L. West
    • 1
  • K. Zhang
    • 1
  • A. Glushchenko
    • 2
  • D. Andrienko
    • 3
    • 1
  • M. Tasinkevych
    • 4
    • 5
  • Y. Reznikov
    • 6
  1. 1.Liquid Crystal InstituteKent State UniversityKentUSA
  2. 2.University of Colorado at Colorado SpringsColorado SpringsUSA
  3. 3.Max-Plank Institute for Polymer ResearchMainzGermany
  4. 4.Max-Planck-Institut für MetallforschungStuttgartGermany
  5. 5.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany
  6. 6.Institute of PhysicsKyivUkraine

Personalised recommendations