Skip to main content
Log in

Air bubbles under vertical vibrations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This paper reports on an experimental study of the splitting instability of an air bubble a few centimetres in diameter placed in a sealed cylindrical cell filled with liquid and submitted to vertical oscillations. The response of the bubble to the oscillations is observed with a high-speed video camera. It is found that the bubble dynamics is closely associated with the acceleration of the cell Γ. For small acceleration values, the bubble undergoes minor shape deformations. With increasing acceleration values, these deformations are amplified and for sufficiently large Γ the bubble becomes toroidal. The bubble may then become unstable and split into smaller parts. The onset of bubble division is studied and its dependency on physical parameters such as the fluid viscosity, the fluid surface tension and the initial size of the bubble is presented. It is found that the criterion for the bubble splitting process is associated with a threshold based on the acceleration of the oscillations. Above this threshold, the number of bubbles present in the cell is observed to grow until a final steady state is reached. Data analysis reveals that the final bubble size may be characterized in terms of Bond number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.O. Hinze, Am. Inst. Chem. Eng. J. 1, 289 (1955).

    Google Scholar 

  2. D. Weaire, S. Hutzler, The Physics of Foams (Clarendon Press, Oxford, 1999).

  3. D. Lohse, Phys. Today 56, 36 (2003).

    Google Scholar 

  4. P.P. Wegener, J.-Y. Parlange, Annu. Rev. Fluid Mech. 5, 79 (1973).

    Article  ADS  Google Scholar 

  5. J. Magnaudet, I. Eames, Annu. Rev. Fluid Mech. 32, 659 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. J. Rensen, D. Bosman, J. Magnaudet, C.-D. Ohl, A. Prosperetti, R. Tögel, M. Versluis, D. Lohse, Phys. Rev. Lett. 86, 4819 (2001).

    Article  ADS  Google Scholar 

  7. M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).

    Google Scholar 

  8. S. Douady, J. Fluid Mech. 221, 383 (1990).

    Article  ADS  Google Scholar 

  9. S. Fauve, K. Kumar, C. Laroche, D. Beyssens, Y. Garrabos, Phys. Rev. Lett. 68, 3160 (1992).

    Article  ADS  Google Scholar 

  10. H. Rodot, C. Bisch, A. Lasek, Acta Astron. 6, 1092 (1979).

    Article  Google Scholar 

  11. A.J. James, B. Vukasinovic, M.K. Smith, A. Glezer, J. Fluid Mech. 476, 1 (2003).

    Article  MATH  ADS  Google Scholar 

  12. A.J. James, M.K. Smith, A. Glezer, J. Fluid Mech. 476, 29 (2003).

    Article  MATH  ADS  Google Scholar 

  13. E.D. Wilkes, O.A. Basaran, J. Colloid Interface Sci. 242, 180 (2001).

    Article  Google Scholar 

  14. E.D. Wilkes, O.A. Basaran, Phys. Fluids 9, 1512 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Ellenberger, J.M. van Baten, R. Krishna, Catal. Today 79-80, 181 (2003).

    Google Scholar 

  16. R.I. Nigmatulin, I.Sh. Akhatov, N.K. Vakhitova, R.T. Lahey, J. Fluid Mech. 414, 47 (2000).

    Article  MATH  ADS  Google Scholar 

  17. M. Kawaji, N. Ichikawa, A. Kariyasaki, A.B. Tryggvason, Large bubble motion in a fluid cell under microgravity: ISCAP experiments on the effects of g-jitter and forced vibration, IAF Paper 99-J308 (1999) (available at http://www.space.gc.ca/asc/pdf/2000 kawaji 1.PDF).

  18. M. Ishikawa, T. Nakamura, S. Yoda, H. Samejima, T. Goshozono, Microgravity Sci. Technol. 7, 164 (1994) (available at http://www.space.gc.ca/asc/pdf/ 2000 FRIESEN.PDF).

    ADS  Google Scholar 

  19. T.W. Cheng, P.N. Holtham, Miner. Eng. 8, 883 (1995).

    Article  Google Scholar 

  20. T. Reis, Introduction à la chimie-physique des surfaces (Editions Dunod, Paris, 1952).

  21. H. Caps, H. Decauwer, M.-L. Chevalier, G. Soyez, M. Ausloos, N. Vandewalle, Eur. Phys. J. B 33, 115 (2003).

    Article  ADS  Google Scholar 

  22. Y. Couder, E. Fort, C.H. Gautier, A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005).

    Article  ADS  Google Scholar 

  23. F. Zouestiagh, M. Legendre, N. Vandewalle, H. Caps, Phys. Fluids 16, S7 (2004).

  24. http : / / pof.aip.org/pof/gallery/2004-Zoueshtiagh. jsp.

  25. T.J. Pedley, J. Fluid Mech. 32, 97 (1968).

    Article  MATH  ADS  Google Scholar 

  26. A.L. Biance, C. Clanet, D. Quéré, Phys. Fluids 15, 1632 (2003).

    Article  ADS  Google Scholar 

  27. H.K. Moffatt, Microhydrodynamics, lecture notes, Vol. 1 (Ed. Ecole Polytechnique, Palaiseau, 1996).

  28. R.F. Probstein, Physicochemical Hydrodynamics, an Introduction (Butterworth, Boston, 1989).

  29. A.W. Adamson, Physical Chemistry of Surfaces, fifth ed. (John Wiley & Sons Inc., NY, USA, 1990).

  30. T. Wang, J. Wang, Y. Jin, Chem. Eng. Sci. 58, 4629 (2003).

    Article  Google Scholar 

  31. V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Caps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoueshtiagh, F., Caps, H., Legendre, M. et al. Air bubbles under vertical vibrations. Eur. Phys. J. E 20, 317–325 (2006). https://doi.org/10.1140/epje/i2005-10131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10131-6

PACS.

Navigation