Advertisement

The European Physical Journal E

, Volume 20, Issue 3, pp 317–325 | Cite as

Air bubbles under vertical vibrations

  • F. Zoueshtiagh
  • H. Caps
  • M. Legendre
  • N. Vandewalle
  • P. Petitjeans
  • P. Kurowski
Regular Article

Abstract.

This paper reports on an experimental study of the splitting instability of an air bubble a few centimetres in diameter placed in a sealed cylindrical cell filled with liquid and submitted to vertical oscillations. The response of the bubble to the oscillations is observed with a high-speed video camera. It is found that the bubble dynamics is closely associated with the acceleration of the cell Γ. For small acceleration values, the bubble undergoes minor shape deformations. With increasing acceleration values, these deformations are amplified and for sufficiently large Γ the bubble becomes toroidal. The bubble may then become unstable and split into smaller parts. The onset of bubble division is studied and its dependency on physical parameters such as the fluid viscosity, the fluid surface tension and the initial size of the bubble is presented. It is found that the criterion for the bubble splitting process is associated with a threshold based on the acceleration of the oscillations. Above this threshold, the number of bubbles present in the cell is observed to grow until a final steady state is reached. Data analysis reveals that the final bubble size may be characterized in terms of Bond number.

PACS.

47.55.dd Bubble dynamics 47.35.Pq Capillary waves 47.20.Dr Surface-tension-driven instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.O. Hinze, Am. Inst. Chem. Eng. J. 1, 289 (1955).Google Scholar
  2. 2.
    D. Weaire, S. Hutzler, The Physics of Foams (Clarendon Press, Oxford, 1999).Google Scholar
  3. 3.
    D. Lohse, Phys. Today 56, 36 (2003).Google Scholar
  4. 4.
    P.P. Wegener, J.-Y. Parlange, Annu. Rev. Fluid Mech. 5, 79 (1973). CrossRefADSGoogle Scholar
  5. 5.
    J. Magnaudet, I. Eames, Annu. Rev. Fluid Mech. 32, 659 (2000).MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    J. Rensen, D. Bosman, J. Magnaudet, C.-D. Ohl, A. Prosperetti, R. Tögel, M. Versluis, D. Lohse, Phys. Rev. Lett. 86, 4819 (2001).CrossRefADSGoogle Scholar
  7. 7.
    M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).Google Scholar
  8. 8.
    S. Douady, J. Fluid Mech. 221, 383 (1990).CrossRefADSGoogle Scholar
  9. 9.
    S. Fauve, K. Kumar, C. Laroche, D. Beyssens, Y. Garrabos, Phys. Rev. Lett. 68, 3160 (1992).CrossRefADSGoogle Scholar
  10. 10.
    H. Rodot, C. Bisch, A. Lasek, Acta Astron. 6, 1092 (1979).CrossRefGoogle Scholar
  11. 11.
    A.J. James, B. Vukasinovic, M.K. Smith, A. Glezer, J. Fluid Mech. 476, 1 (2003).MATHCrossRefADSGoogle Scholar
  12. 12.
    A.J. James, M.K. Smith, A. Glezer, J. Fluid Mech. 476, 29 (2003).MATHCrossRefADSGoogle Scholar
  13. 13.
    E.D. Wilkes, O.A. Basaran, J. Colloid Interface Sci. 242, 180 (2001).CrossRefGoogle Scholar
  14. 14.
    E.D. Wilkes, O.A. Basaran, Phys. Fluids 9, 1512 (1997).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    J. Ellenberger, J.M. van Baten, R. Krishna, Catal. Today 79-80, 181 (2003).Google Scholar
  16. 16.
    R.I. Nigmatulin, I.Sh. Akhatov, N.K. Vakhitova, R.T. Lahey, J. Fluid Mech. 414, 47 (2000).MATHCrossRefADSGoogle Scholar
  17. 17.
    M. Kawaji, N. Ichikawa, A. Kariyasaki, A.B. Tryggvason, Large bubble motion in a fluid cell under microgravity: ISCAP experiments on the effects of g-jitter and forced vibration, IAF Paper 99-J308 (1999) (available at http://www.space.gc.ca/asc/pdf/2000 kawaji 1.PDF).Google Scholar
  18. 18.
    M. Ishikawa, T. Nakamura, S. Yoda, H. Samejima, T. Goshozono, Microgravity Sci. Technol. 7, 164 (1994) (available at http://www.space.gc.ca/asc/pdf/ 2000 FRIESEN.PDF).ADSGoogle Scholar
  19. 19.
    T.W. Cheng, P.N. Holtham, Miner. Eng. 8, 883 (1995).CrossRefGoogle Scholar
  20. 20.
    T. Reis, Introduction à la chimie-physique des surfaces (Editions Dunod, Paris, 1952).Google Scholar
  21. 21.
    H. Caps, H. Decauwer, M.-L. Chevalier, G. Soyez, M. Ausloos, N. Vandewalle, Eur. Phys. J. B 33, 115 (2003).CrossRefADSGoogle Scholar
  22. 22.
    Y. Couder, E. Fort, C.H. Gautier, A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005).CrossRefADSGoogle Scholar
  23. 23.
    F. Zouestiagh, M. Legendre, N. Vandewalle, H. Caps, Phys. Fluids 16, S7 (2004).Google Scholar
  24. 24.
    http : / / pof.aip.org/pof/gallery/2004-Zoueshtiagh. jsp.Google Scholar
  25. 25.
    T.J. Pedley, J. Fluid Mech. 32, 97 (1968).MATHCrossRefADSGoogle Scholar
  26. 26.
    A.L. Biance, C. Clanet, D. Quéré, Phys. Fluids 15, 1632 (2003).CrossRefADSGoogle Scholar
  27. 27.
    H.K. Moffatt, Microhydrodynamics, lecture notes, Vol. 1 (Ed. Ecole Polytechnique, Palaiseau, 1996).Google Scholar
  28. 28.
    R.F. Probstein, Physicochemical Hydrodynamics, an Introduction (Butterworth, Boston, 1989).Google Scholar
  29. 29.
    A.W. Adamson, Physical Chemistry of Surfaces, fifth ed. (John Wiley & Sons Inc., NY, USA, 1990).Google Scholar
  30. 30.
    T. Wang, J. Wang, Y. Jin, Chem. Eng. Sci. 58, 4629 (2003).CrossRefGoogle Scholar
  31. 31.
    V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • F. Zoueshtiagh
    • 1
  • H. Caps
    • 2
  • M. Legendre
    • 3
  • N. Vandewalle
    • 2
  • P. Petitjeans
    • 3
  • P. Kurowski
    • 3
  1. 1.LMLUniversité de Lille 1, UMR 8107 CNRSVilleneuve d'AscqFrance
  2. 2.Institut de Physique B5GRASP - Université de LiègeLiègeBelgium
  3. 3.PMMHÉcole Supérieure de Physique et Chimie Industrielles (ESPCI), UMR 7636 CNRSParis Cedex 05France

Personalised recommendations