The European Physical Journal E

, Volume 19, Issue 2, pp 185–193 | Cite as

Viscoelastic dewetting of a polymer film on a liquid substrate

Regular Articles


The Dewetting of thin polymer films (60–300 nm) on a non-wettable liquid substrate has been studied in the vicinity of their glass transition temperature. In our experiment, we observe a global contraction of the film while its thickness remains uniform. We show that, in this case, the strain corresponds to simple extension, and we verify that it is linear with the stress applied by the surface tension. This allows direct measurement of the stress/strain response as a function of time, and thus permits the measurement of an effective compliance of the thin films. It is, however, difficult to obtain a complete viscoelastic characterization, as the short time response is highly dependant on the physical age of the sample. Experimental results underline the effects of residual stress and friction when dewetting is analyzed on rigid substrates.


68.60.-p Physical properties of thin films, nonelectronic 61.41.+e Polymers, elastomers, and plastics 68.55.-a Thin film structure and morphology 83.60.Bc Linear viscoelasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994) Google Scholar
  2. J.A. Forrest, Eur. Phys. J. E 8, 261 (2002) CrossRefGoogle Scholar
  3. M. Alcoutlabi, G.B. McKenna, J. Phys. Condens. Matter 17, R461 (2005) Google Scholar
  4. Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, (2005) Google Scholar
  5. Z. Fakhraai, S. Valadkhan, J.A. Forrest, Eur. Phys. J. E 18, 143 (2005) CrossRefGoogle Scholar
  6. D. Johannsmann, Eur. Phys. J. E 8, 257 (2002) CrossRefGoogle Scholar
  7. P.A. O'Connell, G.B. McKenna, Science 307, 1760 (2005) CrossRefADSGoogle Scholar
  8. K. Dalnoki-Veress, B.G. Nickel, C. Roth, J.R. Dutcher, Phys. Rev. E 59, 2153 (1999) CrossRefADSGoogle Scholar
  9. J.L. Masson, P.F. Green, Phys. Rev. Lett. 88, 205504 (2002) CrossRefADSGoogle Scholar
  10. J.L. Masson, P.F. Green, Phys. Rev. E 65, 031806 (2002) CrossRefADSGoogle Scholar
  11. P. Damman, N. Baudelet, G. Reiter, Phys. Rev. Lett. 91, 216101 (2003) CrossRefADSGoogle Scholar
  12. G. Reiter, M. Sferrazza, P. Damman, Eur. Phys. J. E 12, 133 (2003) CrossRefGoogle Scholar
  13. J.H. Xavier, Y. Pu, C. Li, M.H. Rafailovich, J. Sokolov, Macromolecules 37, 1470 (2004) CrossRefGoogle Scholar
  14. T. Vilmin, E. Raphael, Europhys. Lett. 72, 781 (2005) CrossRefGoogle Scholar
  15. G. Debregeas, P. Martin, F. Brochardwyart, Phys. Rev. Lett. 75, 3886 (1995) CrossRefADSGoogle Scholar
  16. F. BrochardWyart, G. Debregeas, R. Fondecave, P. Martin, Macromolecules 30, 1211 (1997) CrossRefGoogle Scholar
  17. M.P. Brenner, D. Gueyffier, Phys. Fluids 11, 737 (1999) CrossRefADSMathSciNetGoogle Scholar
  18. G. Reiter, Phys. Rev. Lett. 8718, 186101 (2001) CrossRefADSGoogle Scholar
  19. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 87, 196101 (2001) CrossRefADSGoogle Scholar
  20. F. Saulnier, E. Raphael, P.G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002) CrossRefADSGoogle Scholar
  21. F. Saulnier, E. Raphael, P.G. de Gennes, Phys. Rev. E 66, 061607 (2002) CrossRefADSGoogle Scholar
  22. V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002) CrossRefADSGoogle Scholar
  23. S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002) CrossRefADSGoogle Scholar
  24. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 12, 101 (2003) CrossRefGoogle Scholar
  25. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005) CrossRefGoogle Scholar
  26. G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001) CrossRefMathSciNetGoogle Scholar
  27. E. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 6303 (2001) Google Scholar
  28. H. Hencky, J. Rheol. 2, 169 (1931) CrossRefGoogle Scholar
  29. Such a definition of strain is coherent with the standard definition of the strain rate: \(\dot{\epsilon}=\dot{h}/h\). For the moderate strain used in this article, the logarithmic correction to the Hencky strain can be neglected, \(\epsilon\sim2\nu\left( 1-A/A_{0}\right)\) Google Scholar
  30. G. Reiter, Phys. Rev. Lett. 68, 75 (1992) CrossRefADSGoogle Scholar
  31. G. Reiter, Langmuir 9, 1344 (1993) CrossRefGoogle Scholar
  32. M. Geoghegan, G. Krausch, Prog. Polym. Sci. 28, 261 (2003) CrossRefGoogle Scholar
  33. P. Muller-Buschbaum, Eur. Phys. J. E 12, 443 (2003) CrossRefGoogle Scholar
  34. P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953) Google Scholar
  35. J.D. Ferry, Viscoleastic Properties of Polymers, 3rd ed. (John Wiley & Sons, Inc., New-York, 1980) Google Scholar
  36. G.E. Brandkrup J., Immergut C.H., Polymer Handbook, fourth ed. (John Wiley & Sons, New-York, 1999) Google Scholar
  37. D.J. Plazek, J. Phys. Chem. 69, 3480 (1965) Google Scholar
  38. A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Macromolecules 36, 5174 (2003) CrossRefGoogle Scholar
  39. This value is calculated from values of the viscosities given in Hassager_mac03 for molecular weight above and below the one used in this article. Extrapolation is made according to the following dependance η∼Mw 3.3 Google Scholar
  40. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986) Google Scholar
  41. From the values of the zero shear viscosity and shear creep compliance plateau reported by Plazeck plazek_JPC65 on PS (Mw = 47 kg/mol) extrapolated to the molecular weight used in this article, the reptation time is τd =1750 s. From the values reported by Bach et al. Hassager_mac03, τd = 3380 s Google Scholar
  42. L.C.E. Struick, Physical aging in amourphous polymers and other materials (Elsevier, New York, 1978) Google Scholar
  43. I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994) CrossRefGoogle Scholar
  44. A.J. Kovacs, J. Polym. Sci. 30, 131 (1958) CrossRefGoogle Scholar
  45. T. Kanaya, T. Miyazaki, H. Watanabe, K. Nishida, H. Yamana, S. Tasaki, D.B. Bucknall, Polymer 44, 3769 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.ESPCI, Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615Paris Cedex 05France

Personalised recommendations