Skip to main content
Log in

Neutralino and chargino production in U(1)′ at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We examine the production and decay modes of neutralinos and charginos in a softly-broken supersymmetric model with an extra Abelian symmetry U(1)′. We perform the study in a U(1)′ model with a secluded sector, where the tension between the electroweak scale and developing a large enough mass for Z′ is resolved by incorporating three additional SU(2) singlet fields into the model. Although the chargino sector is the same as in the MSSM, the neutralino sector of the model is very rich: five new fermion fields are added to the neutral sector bring the total neutralino states to nine. We implement the model into standard packages and perform a detailed and systematic analysis of production and decay modes at the LHC, for three different scenarios, consistent with the Higgs data and relic density constraints. We concentrate on final signals (1) \(1\ell+\mathit{jets}+\not\! \! E_{T} \), (2) \(2\ell+\mathit{jets}+\not\! \! E_{T} \) and (3) \(3\ell+0\mathit{jets}+\not\! \! E_{T} \), and comment on the case with \(0\ell+\mathit{jets}+\not\! \! E_{T} \). We discuss backgrounds and indicate how these signals can be observed, and how the model can be distinguished from other supersymmetric model scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The Higgs sector parameters can be fine-tuned and do not affect the specific calculations in this paper.

  2. The branching ratios into tW,bZ and bH 0 for this analysis are assumed to be 42 %, 31 % and 27 %, respectively, for m 𝒬=500 GeV, and the mass restrictions depend crucially on the assumed branching ratios. For reduced ratios, as in our parameter space, the limits disappear.

  3. Requiring one lepton in the final state will significantly reduce the QCD multijet production.

  4. Note that the graphs in the frames 4–6 are interconnected, as \(\varDelta R_{\ell\ell}=(\varDelta\eta_{\ell\ell}^{2}+ \varDelta\phi_{\ell\ell}^{2})^{1/2}\).

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  3. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett 110, 021801 (2013). arXiv:1211.2674

    Article  ADS  Google Scholar 

  4. M. Cvetic, P. Langacker, Phys. Rev. D 54, 3570 (1996)

    Article  ADS  Google Scholar 

  5. M. Cvetic, P. Langacker, Mod. Phys. Lett. A 11, 1247 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. J.L. Hewett, T.G. Rizzo, Phys. Rep. 183, 193 (1989)

    Article  ADS  Google Scholar 

  7. C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003)

    Article  ADS  Google Scholar 

  8. J.E. Kim, H.P. Nilles, Phys. Lett. B 138, 150 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Suematsu, Y. Yamagishi, Int. J. Mod. Phys. A 10, 4521 (1995)

    Article  ADS  Google Scholar 

  10. M. Cvetic, P. Langacker, Mod. Phys. Lett. A 11, 1247 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. Jain, R. Shrock, arXiv:hep-ph/9507238

  12. D.A. Demir, Phys. Rev. D 59, 015002 (1999)

    Article  ADS  Google Scholar 

  13. H.S. Lee, K.T. Matchev, T.T. Wang, Phys. Rev. D 77, 015016 (2008)

    Article  ADS  Google Scholar 

  14. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  15. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  16. J.h. Kang, P. Langacker, T.j. Li, Phys. Rev. D 71, 015012 (2005)

    Article  ADS  Google Scholar 

  17. D.A. Demir, L.L. Everett, P. Langacker, Phys. Rev. Lett. 100, 091804 (2008)

    Article  ADS  Google Scholar 

  18. D.A. Demir, Y. Farzan, J. High Energy Phys. 0603, 010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012)

    Article  ADS  Google Scholar 

  20. G.G. Ross, K. Schmidt-Hoberg, F. Staub, J. High Energy Phys. 1208, 074 (2012). arXiv:1205.1509 [hep-ph]

    Article  ADS  Google Scholar 

  21. J. Erler, P. Langacker, T.j. Li, Phys. Rev. D 66, 015002 (2002)

    Article  ADS  Google Scholar 

  22. C.W. Chiang, E. Senaha, J. High Energy Phys. 0806, 019 (2008)

    Article  ADS  Google Scholar 

  23. D.A. Demir, M. Frank, L. Selbuz, I. Turan, Phys. Rev. D 83, 095001 (2011)

    Article  ADS  Google Scholar 

  24. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2174 (2012)

    Article  ADS  Google Scholar 

  25. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 715, 44 (2012)

    Article  ADS  Google Scholar 

  26. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 108, 181802 (2012)

    Article  ADS  Google Scholar 

  27. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 85, 012004 (2012)

    Article  ADS  Google Scholar 

  28. R.M. Godbole, M. Guchait, K. Mazumdar, S. Moretti, D.P. Roy, Phys. Lett. B 571, 184 (2003). hep-ph/0304137

    Article  ADS  Google Scholar 

  29. D. Ghosh, R. Godbole, M. Guchait, K. Mohan, D. Sengupta, arXiv:1211.7015 [hep-ph]

  30. O.J.P. Eboli, D. Zeppenfeld, Phys. Lett. B 495, 147 (2000). hep-ph/0009158

    Article  ADS  Google Scholar 

  31. M. Frank, L. Selbuz, L. Solmaz, I. Turan, Phys. Rev. D 87, 075007 (2013)

    Article  ADS  Google Scholar 

  32. K. Schmidt-Hoberg, F. Staub, arXiv:1208.1683 [hep-ph]

  33. H. An, T. Liu, L.-T. Wang, arXiv:1207.2473 [hep-ph]

  34. A. Delgado, G. Nardini, M. Quiros, arXiv:1207.6596 [hep-ph]

  35. L. Basso, F. Staub, arXiv:1210.7946 [hep-ph]

  36. G. Aad et al. (ATLAS Collaboration), arXiv:1208.2884 [hep-ex]

  37. G. Aad et al. (ATLAS Collaboration), arXiv:1208.3144 [hep-ex]

  38. The ATLAS Collaboration, ATLAS-2012-CONF-2012-041 (2012)

  39. G. Aad et al. (ATLAS Collaboration), arXiv:1204.5638 [hep-ex]

  40. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2013-035

  41. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2013-049

  42. S. Chatrchyan et al. (CMS Collaboration), arXiv:1209.6620 [hep-ex]

  43. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1206, 169 (2012)

    Article  ADS  Google Scholar 

  44. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 704, 411 (2011)

    Article  ADS  Google Scholar 

  45. S. Chatrchyan et al. (CMS Collaboration), CMS-SUS-13-006

  46. H. Baer, C.-h. Chen, F. Paige, X. Tata, Phys. Rev. D 50, 4508 (1994)

    Article  ADS  Google Scholar 

  47. A. Bharucha, S. Heinemeyer, F. von der Pahlen, arXiv:1307.4237 [hep-ph]

  48. S. Gori, S. Jung, L.-T. Wang, arXiv:1307.5952 [hep-ph]

  49. A. Alloul, M. Frank, B. Fuks, M.R. de Traubenberg, arXiv:1307.5073 [hep-ph]

  50. D.A. Demir, L.L. Everett, M. Frank, L. Selbuz, I. Turan, Phys. Rev. D 81, 035019 (2010)

    Article  ADS  Google Scholar 

  51. E. Komatsu et al. (WMAP Collaboration), arXiv:1001.4538 [astro-ph.CO]

  52. S.Y. Choi, H.E. Harber, J. Jalinowski, P.M. Zewas, Nucl. Phys. B 778, 85 (2007)

    Article  ADS  Google Scholar 

  53. V. Barger, C. Kao, P. Langacker, H.-S. Lee, Phys. Lett. B 600, 104 (2004). hep-ph/0408120

    Article  ADS  Google Scholar 

  54. M. Battaglia, A. De Roeck, J.R. Ellis, F. Gianotti, K.A. Olive, L. Pape, Eur. Phys. J. C 33, 273 (2004)

    Article  ADS  Google Scholar 

  55. M. Battaglia, A. De Roeck, J.R. Ellis et al., Eur. Phys. J. C 22, 535–561 (2001)

    Article  ADS  Google Scholar 

  56. A. Ali, D.A. Demir, M. Frank, I. Turan, Phys. Rev. D 79, 095001 (2009). arXiv:0902.3826 [hep-ph]

    Article  ADS  Google Scholar 

  57. A.J. Buras, R. Fleischer, J. Girrbach, R. Knegjens, arXiv:1303.3820 [hep-ph]

  58. URL: http://theory.sinp.msu.ru/~pukhov/calchep.html

  59. A. Pukhov, arXiv:hep-ph/0412191

  60. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 180, 747–767 (2009)

    Article  ADS  MATH  Google Scholar 

  61. G. Belanger, F. Boudjema, P. Brun et al., arXiv:1004.1092 [hep-ph]

  62. D.N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  63. A. Semenov, arXiv:0805.0555 [hep-ph]

  64. A. Semenov, Comput. Phys. Commun. 115, 124 (1998)

    Article  ADS  MATH  Google Scholar 

  65. M.R. Whalley, D. Bourilkov, R.C. Group, arXiv:hep-ph/0508110

  66. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]

    Article  ADS  Google Scholar 

  67. S.W. Ham, E.J. Yoo, S.K. Oh, Phys. Rev. D 76, 015004 (2007). hep-ph/0703041 [HEP-PH]

    Article  ADS  Google Scholar 

  68. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009). arXiv:0801.1345 [hep-ph]

    Article  ADS  Google Scholar 

  69. The ATLAS Collaboration, ATLAS-CONF-2013-051

  70. J. Kang, P. Langacker, B.D. Nelson, Phys. Rev. D 77, 035003 (2008). arXiv:0708.2701 [hep-ph]

    Article  ADS  Google Scholar 

  71. M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 71, 083502 (2005). astro-ph/0408426

    Article  ADS  Google Scholar 

  72. S. Chatrchyan et al. (CMS Collaboration), arXiv:1305.0491 [hep-ex]

  73. S.W. Ham, S.K. Oh, J. Phys. G 37, 045003 (2010). arXiv:0906.5526 [hep-ph]

    Article  ADS  Google Scholar 

  74. http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm

  75. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 092002 (2012)

    Article  ADS  Google Scholar 

  76. G. Aad et al. (ATLAS Collaboration), arXiv:0901.0512 [hep-ex]

  77. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 67 (2012)

    Article  ADS  Google Scholar 

  78. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 106, 131802 (2011)

    Article  ADS  Google Scholar 

  79. S. Mukhopadhyay, B. Mukhopadhyaya, A. Nyffeler, J. High Energy Phys. 1005, 001 (2010)

    Article  ADS  Google Scholar 

  80. H. Davoudiasl, T. Han, H.E. Logan, Phys. Rev. D 71, 115007 (2005)

    Article  ADS  Google Scholar 

  81. S. Abdullin et al. (CMS Collaboration), J. Phys. G 28, 469 (2002). hep-ph/9806366

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.F. would like to thank Benjamin Fuks for many discussions on the topic of chargino and neutralino production. The work of M.F. is supported in part by NSERC under grant number SAP105354. The research of L.S. is supported in part by The Council of Higher Education of Turkey (YOK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Frank.

Appendix: Feynman diagrams for decays channels

Appendix: Feynman diagrams for decays channels

We list the main decay channels of chargino and neutralinos in Scenario A, (Fig. 7), Scenario B, (Fig. 8) and Scenario C (Fig. 9).

Fig. 7
figure 7

Generic Feynman diagrams for the decays of the chargino \({\tilde{\chi}}_{1}^{\pm}\) and neutralinos \({\tilde{\chi}}_{2}^{0}, {\tilde{\chi}}_{4}^{0}\), and \({\tilde{\chi}}_{6}^{0}\) in Scenario A of the secluded U(1)′ model. Here \(\tilde{l}\) are scalar leptons, H i ,A j are scalar and pseudoscalar Higgs bosons, and W and Z are gauge bosons

Fig. 8
figure 8

Generic Feynman diagrams for the decays of the chargino \({\tilde{\chi}}_{1}^{\pm}\) and neutralinos \({\tilde{\chi}}_{i}^{0}, i=2, \ldots,6\) in Scenario B of the secluded U(1)′ model. Intermediate particle notation is the same as in Fig. 7

Fig. 9
figure 9

Generic Feynman diagrams for the decays of the chargino \({\tilde{\chi}}_{1}^{\pm}\) and neutralino \({\tilde{\chi}}_{2}^{0}\) in Scenario C of the secluded U(1)′ model. Intermediate particle notation is the same as in Fig. 7, and \(\tilde{\nu}_{l}\) is the scalar neutrino

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, M., Selbuz, L. & Turan, I. Neutralino and chargino production in U(1)′ at the LHC. Eur. Phys. J. C 73, 2656 (2013). https://doi.org/10.1140/epjc/s10052-013-2656-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2656-7

Keywords

Navigation