Skip to main content
Log in

Dispersive representation of the pion vector form factor in τππν τ decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We propose a dispersive representation of the charged pion vector form factor that is consistent with chiral symmetry and fulfills the constraints imposed by analyticity and unitarity. Unknown parameters are fitted to the very precise data on τ π π 0 ν τ decays obtained by Belle, leading to a good description of the corresponding spectral function up to a ππ squared invariant mass s≃1.5 GeV2. We determine the ρ(770) mass and width pole parameters and obtain the values of low-energy observables. The significance of isospin-breaking corrections is also discussed. For larger values of s, this representation is complemented with a phenomenological description to allow its implementation in the new TAUOLA hadronic currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The asymptotic limit of the phase shift obtained from Eq. (16) slightly deviates from this value, owing to the linear growth of Γ ρ with s.

  2. Best fits are obtained in all cases for s 1≃0.98 GeV2, in agreement with theoretical expectations.

  3. Details of this parametrization are given in the next section, see Eq. (31) and below.

  4. This has been pointed out in Refs. [49, 72] for the case of the K (892) resonance, analyzed in the context of τ →() ν τ decays.

References

  1. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009)

    Article  ADS  Google Scholar 

  2. J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 032013 (2012)

    Article  ADS  Google Scholar 

  3. M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008)

    Article  ADS  Google Scholar 

  4. R.R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 648, 28–38 (2007)

    Article  ADS  Google Scholar 

  5. A. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 606, 12 (2005)

    Article  ADS  Google Scholar 

  6. F. Ambrosino et al. (KLOE Collaboration), Eur. Phys. J. C 49, 473 (2007)

    Article  ADS  Google Scholar 

  7. F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 700, 102 (2011)

    Article  ADS  Google Scholar 

  8. D. Babusci et al. (KLOE Collaboration), arXiv:1212.4524 [hep-ex]

  9. M.N. Achasov, K.I. Beloborodov, A.V. Berdyugin, A.G. Bogdanchikov, A.V. Bozhenok, A.D. Bukin, D.A. Bukin, T.V. Dimova et al., J. Exp. Theor. Phys. 101, 1053–1070 (2005)

    Article  ADS  Google Scholar 

  10. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

    Article  ADS  Google Scholar 

  11. A. Pich, Conf. Proc. C 890523, 416 (1989)

    Google Scholar 

  12. J.H. Kühn, A. Santamaría, Z. Phys. C 48, 445 (1990)

    Article  Google Scholar 

  13. R. Decker, E. Mirkes, R. Sauer, Z. Was, Z. Phys. C 58, 445 (1993)

    Article  ADS  Google Scholar 

  14. R. Decker, M. Finkemeier, P. Heiliger, H.H. Jonsson, Z. Phys. C 70, 247 (1996)

    Article  Google Scholar 

  15. M. Finkemeier, E. Mirkes, Z. Phys. C 69, 243 (1996)

    Article  Google Scholar 

  16. J.H. Kühn, Z. Was, Acta Phys. Pol. B 39, 147 (2008)

    ADS  Google Scholar 

  17. S. Jadach, Z. Was, Comput. Phys. Commun. 64, 267 (1991)

    Article  ADS  Google Scholar 

  18. S. Jadach, J.H. Kühn, Z. Was, Comput. Phys. Commun. 64, 275 (1990)

    Article  ADS  Google Scholar 

  19. S. Jadach, Z. Was, R. Decker, J.H. Kühn, Comput. Phys. Commun. 76, 361 (1993)

    Article  ADS  Google Scholar 

  20. J. Portolés, Nucl. Phys. B, Proc. Suppl. 98, 210 (2001)

    Article  ADS  Google Scholar 

  21. P. Roig, Nucl. Phys. B, Proc. Suppl. 189, 78 (2009)

    Article  ADS  Google Scholar 

  22. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  24. A.V. Manohar, in Les Houches 1997, Probing the Standard Model of Particle Interactions, Pt. 2 (1999), pp. 1091–1169

    Google Scholar 

  25. A. Pich, in Tempe 2002, Phenomenology of Large N C QCD (2002), pp. 239–258

    Google Scholar 

  26. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  27. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    Article  ADS  Google Scholar 

  28. V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich, J. Portolés, Nucl. Phys. B 753, 139 (2006)

    Article  ADS  MATH  Google Scholar 

  29. M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003)

    Article  ADS  Google Scholar 

  30. M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003)

    Article  ADS  Google Scholar 

  31. M. Davier, A. Hoecker, G. López Castro, B. Malaescu, X.H. Mo, G. Toledo Sánchez, P. Wang, C.Z. Yuan et al., Eur. Phys. J. C 66, 127 (2010)

    Article  ADS  Google Scholar 

  32. F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011)

    Article  ADS  Google Scholar 

  33. M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Eur. Phys. J. C 72, 1848 (2012)

    Article  ADS  Google Scholar 

  34. M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184 [hep-ph]

  35. H. Czyż, A. Denig, M. De Stefanis, S. Eidelman, K. Griessinger, A.M. Hafner, H. Hu et al., Constraining the hadronic contributions to the muon anomalous magnetic moment, in Mini-proceedings of the Workshop on “Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment” Which Included the “13th Meeting of the Radio MonteCarLow WG” and the “Satellite Meeting R-Measurements at BES-III”, Trento, April 10–12, 2013. arXiv:1306.2045 [hep-ph]

    Google Scholar 

  36. M. Passera, W.J. Marciano, A. Sirlin, Phys. Rev. D 78, 013009 (2008)

    Article  ADS  Google Scholar 

  37. J. Gasser, U.G. Meissner, Nucl. Phys. B 357, 90 (1991)

    Article  ADS  Google Scholar 

  38. J. Bijnens, G. Colangelo, P. Talavera, J. High Energy Phys. 9805, 014 (1998)

    ADS  Google Scholar 

  39. J. Bijnens, P. Talavera, J. High Energy Phys. 0203, 046 (2002)

    Article  ADS  Google Scholar 

  40. J.F. De Trocóniz, F.J. Ynduráin, Phys. Rev. D 65, 093001 (2002)

    Article  Google Scholar 

  41. J.A. Oller, E. Oset, J.E. Palomar, Phys. Rev. D 63, 114009 (2001)

    Article  ADS  Google Scholar 

  42. F. Guerrero, A. Pich, Phys. Lett. B 412, 382 (1997)

    Article  ADS  Google Scholar 

  43. A. Pich, J. Portolés, Phys. Rev. D 63, 093005 (2001)

    Article  ADS  Google Scholar 

  44. C. Hanhart, Phys. Lett. B 715, 170 (2012)

    Article  ADS  Google Scholar 

  45. J.J. Sanz-Cillero, A. Pich, Eur. Phys. J. C 27, 587 (2003)

    Article  ADS  Google Scholar 

  46. C.A. Domínguez, Phys. Lett. B 512, 331 (2001)

    Article  ADS  Google Scholar 

  47. C. Bruch, A. Khodjamirian, J.H. Kühn, Eur. Phys. J. C 39, 41 (2005)

    Article  ADS  Google Scholar 

  48. M. Jamin, A. Pich, J. Portolés, Phys. Lett. B 640, 176 (2006)

    Article  ADS  Google Scholar 

  49. D.R. Boito, R. Escribano, M. Jamin, Eur. Phys. J. C 59, 821–829 (2009)

    Article  ADS  Google Scholar 

  50. O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was, Phys. Rev. D 86, 113008 (2012)

    Article  ADS  Google Scholar 

  51. P. Roig, I.M. Nugent, T. Przedzinski, O. Shekhovtsova, Z. Was, AIP Conf. Proc. 1492, 57 (2012)

    Article  ADS  Google Scholar 

  52. O. Shekhovtsova, I.M. Nugent, T. Przedzinski, P. Roig, Z. Was, AIP Conf. Proc. 1492, 62 (2012)

    Article  ADS  Google Scholar 

  53. O. Shekhovtsova, I.M. Nugent, T. Przedzinski, P. Roig, Z. Was, arXiv:1301.1964 [hep-ph] and work in progress

  54. M. Jamin, A. Pich, J. Portolés, Phys. Lett. B 664, 78 (2008)

    Article  ADS  Google Scholar 

  55. E. Arganda, M.J. Herrero, J. Portolés, J. High Energy Phys. 0806, 079 (2008)

    Article  ADS  Google Scholar 

  56. D. Gomez Dumm, P. Roig, A. Pich, J. Portolés, Phys. Rev. D 81, 034031 (2010)

    Article  ADS  Google Scholar 

  57. D. Gomez Dumm, P. Roig, A. Pich, J. Portolés, Phys. Lett. B 685, 158 (2010)

    Article  ADS  Google Scholar 

  58. D. Gomez Dumm, P. Roig, Phys. Rev. D 86, 076009 (2012)

    Article  ADS  Google Scholar 

  59. S. Actis et al., Eur. Phys. J. C 66, 585 (2010)

    Article  Google Scholar 

  60. Z.-H. Guo, P. Roig, Phys. Rev. D 82, 113016 (2010)

    Article  ADS  Google Scholar 

  61. Z.-H. Guo, P. Roig, Nucl. Phys. B, Proc. Suppl. 218, 122 (2011)

    Article  ADS  Google Scholar 

  62. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985)

    Article  ADS  Google Scholar 

  63. D. Gomez Dumm, A. Pich, J. Portolés, Phys. Rev. D 62, 054014 (2000)

    Article  ADS  Google Scholar 

  64. F. Guerrero, Phys. Rev. D 57, 4136 (1998)

    Article  ADS  Google Scholar 

  65. W. Ochs, Thesis, LMU München, 1973

  66. B. Hyams et al., Nucl. Phys. B 64, 134 (1973) [AIP Conf. Proc. 13 (1973) 206]

    Article  ADS  Google Scholar 

  67. P. Estabrooks, A.D. Martin, Nucl. Phys. B 79, 301 (1974)

    Article  ADS  Google Scholar 

  68. S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski, G.R. Lynch, M.S. Rabin et al., Phys. Rev. D 7, 1279 (1973)

    Article  ADS  Google Scholar 

  69. A.D. Martin, T.D. Spearman, Elementary Particle Theory (North-Holland, Amsterdam, 1970). ISBN-10: 0720401577. ISBN-13: 9780720401578. xvi, 528 pp., illus.

    Google Scholar 

  70. H. Leutwyler, hep-ph/0212324

  71. E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 78, 034031 (2008)

    Article  ADS  Google Scholar 

  72. D.R. Boito, R. Escribano, M. Jamin, J. High Energy Phys. 1009, 031 (2010)

    Article  ADS  Google Scholar 

  73. V. Cirigliano, G. Ecker, H. Neufeld, Phys. Lett. B 513, 361 (2001)

    Article  ADS  Google Scholar 

  74. V. Cirigliano, G. Ecker, H. Neufeld, J. High Energy Phys. 0208, 002 (2002)

    Article  ADS  Google Scholar 

  75. F. Flores-Báez, A. Flores-Tlalpa, G. López Castro, G. Toledo Sánchez, Phys. Rev. D 74, 071301 (2006)

    Article  ADS  Google Scholar 

  76. H. Hayashii, private communication

  77. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  78. R. de Montessus de Ballore, Bull. Soc. Math. Fr. 30, 28–36 (1902)

    MATH  Google Scholar 

  79. G.A. Baker, P. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  80. P. Masjuan, arXiv:1012.2806 [hep-ph]

  81. J.J. Sanz-Cillero, arXiv:1002.3512 [hep-ph]

  82. P. Masjuan, J.J. Sanz-Cillero, arXiv:1306.6308 [hep-ph]

  83. N.N. Achasov, A.A. Kozhevnikov, Phys. Rev. D 83, 113005 (2011) [Erratum-ibid. D 85 (2012) 019901]

    Article  ADS  Google Scholar 

  84. T. Bhattacharya, S. Willenbrock, Phys. Rev. D 47, 4022 (1993)

    Article  ADS  Google Scholar 

  85. A. Bernicha, G. López Castro, J. Pestieau, Phys. Rev. D 50, 4454 (1994)

    Article  ADS  Google Scholar 

  86. R. Escribano, A. Gallegos, J.L. Lucio M., G. Moreno, J. Pestieau, Eur. Phys. J. C 28, 107 (2003)

    Article  ADS  Google Scholar 

  87. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001)

    Article  ADS  MATH  Google Scholar 

  88. M. Feuillat, J.L. Lucio M., J. Pestieau, Phys. Lett. B 501, 37 (2001)

    Article  ADS  Google Scholar 

  89. J.R. Peláez, Mod. Phys. Lett. A 19, 2879 (2004)

    Article  ADS  Google Scholar 

  90. Z.Y. Zhou, G.Y. Qin, P. Zhang, Z. Xiao, H.Q. Zheng, N. Wu, J. High Energy Phys. 0502, 043 (2005)

    Article  ADS  Google Scholar 

  91. R. García-Martín, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira, F.J. Ynduráin, Phys. Rev. D 83, 074004 (2011)

    Article  ADS  Google Scholar 

  92. S.M. Roy, Phys. Lett. B 36, 353 (1971)

    Article  ADS  Google Scholar 

  93. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001)

    Article  ADS  Google Scholar 

  94. I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012)

    Article  ADS  Google Scholar 

  95. P. Roig, Nucl. Phys. B, Proc. Suppl. 225–227, 161 (2012)

    Article  Google Scholar 

  96. T.N. Truong, hep-ph/9809476

  97. J.F. de Trocóniz, F.J. Ynduráin, Phys. Rev. D 71, 073008 (2005)

    Article  Google Scholar 

  98. P. Masjuan, S. Peris, J.J. Sanz-Cillero, Phys. Rev. D 78, 074028 (2008)

    Article  ADS  Google Scholar 

  99. F.-K. Guo, C. Hanhart, F.J. Llanes-Estrada, U.-G. Meissner, Phys. Lett. B 678, 90 (2009)

    Article  ADS  Google Scholar 

  100. S. Aoki et al. (JLQCD and TWQCD Collaborations), Phys. Rev. D 80, 034508 (2009)

    Article  ADS  Google Scholar 

  101. B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 83, 096002 (2011)

    Article  ADS  Google Scholar 

  102. B. Ananthanarayan, I. Caprini, D. Das, I.S. Imsong, arXiv:1302.6373 [hep-ph]

  103. G. Colangelo, M. Finkemeier, R. Urech, Phys. Rev. D 54, 4403 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J.J. Sanz-Cillero and J. Portolés for a critical reading of our manuscript, and to M. Davier, R. Escribano, G. López Castro, B. Moussallam and A. Pich for illuminating discussions. P.R. acknowledges J. Bijnens and M. Jamin for useful explanations. We also thank H. Hayashii and D. Epifanov for their valuable information on the analysis carried out by the Belle Collaboration, and G. Toledo for his help on the evaluation of isospin-breaking corrections. This work has been partially supported by the Spanish grants FPA2007-60323, FPA2011-25948 and by the Spanish Consolider Ingenio 2010 Programme CPAN (CSD2007-00042). It has also been founded in part by CONICET and ANPCyT (Argentina), under grants PIP02495 and PICT-2011-0113, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roig.

Appendix

Appendix

The explicit form of the loop functions A PQ (s) can be obtained from Ref. [62]. One has

$$ A_{PQ}(s)=-\frac{192\pi^2 [sM_{PQ}(s)-L_{PQ}(s)]}{s}, $$
(A.1)

where M PQ (s) and L PQ (s) can be written in terms of new functions Σ PQ , Δ PQ , k PQ , \(\bar{J}_{PQ}\) and \(\tilde{J}_{PQ}\) as

$$\begin{aligned} \begin{aligned}[c] &M_{PQ}(s) = \frac{1}{12s}(s-2\varSigma_{PQ}) \bar{J}_{PQ}(s)+ \frac{\Delta_{PQ}^2}{3s^2}\tilde{J}_{PQ}(s) \\ &\phantom{M_{PQ}(s) =}{}-\frac{1}{6}k_{PQ}+ \frac{1}{288\pi^2}, \\ &L_{PQ}(s) = \frac{\Delta_{PQ}^2}{4s}\bar{J}_{PQ}(s) . \end{aligned} \end{aligned}$$
(A.2)

The new functions Σ PQ and Δ PQ are defined by \(\varSigma_{PQ}=m_{P}^{2}+m_{Q}^{2}\), \(\Delta_{PQ}=m_{P}^{2}-m_{Q}^{2}\), while k PQ includes the renormalization scale μ:

$$ k_{PQ} = \frac{F_\pi^2}{\Delta_{PQ}}(\mu_P-\mu_Q) , $$
(A.3)

where

$$ \mu_P = \frac{m_P^2}{32\pi^2F_\pi^2} \log\biggl(\frac{m_P^2}{\mu ^2} \biggr) $$
(A.4)

(we have taken μ=M ρ , as in the isospin symmetric case). Finally, the functions \(\bar{J}_{PQ}\) and \(\tilde{J}_{PQ}\) are given by

$$\begin{aligned} \begin{aligned}[c] & \tilde{J}_{PQ}(s) = \bar{J}_{PQ}(s)-s \bar{J}'_{PQ}(0) \\ & \bar{J}_{PQ}(s) = \frac{1}{32\pi^2} \biggl[ 2 + \biggl( \frac{\Delta_{PQ}}{s} - \frac{\varSigma_{PQ}}{\Delta_{PQ}} \biggr)\log \biggl(\frac{m_Q^2}{m_P^2} \biggr) \\ & \phantom{\bar{J}_{PQ}(s) =} {}- \frac{\nu}{s}\log \biggl(\frac{(s+\nu)^2-\Delta_{PQ}^2}{(s-\nu)^2- \Delta_{PQ}^2} \biggr) \biggr] , \end{aligned} \end{aligned}$$
(A.5)

where \(\nu=\lambda^{1/2}(s,m_{P}^{2},m_{Q}^{2})\). We note finally that

$$ s\bar{J}'_{PQ}(0)=\frac{s}{32\pi^2} \biggl( \frac{\varSigma_{PQ}}{\Delta_{PQ}^2} + 2\frac{M_P^2 M_Q^2}{\Delta_{PQ}^3} \log\frac{M_Q^2}{M_P^2} \biggr) . $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumm, D.G., Roig, P. Dispersive representation of the pion vector form factor in τππν τ decays. Eur. Phys. J. C 73, 2528 (2013). https://doi.org/10.1140/epjc/s10052-013-2528-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2528-1

Keywords

Navigation