Dispersive representation of the pion vector form factor in τππν τ decays

Regular Article - Theoretical Physics

Abstract

We propose a dispersive representation of the charged pion vector form factor that is consistent with chiral symmetry and fulfills the constraints imposed by analyticity and unitarity. Unknown parameters are fitted to the very precise data on τ π π 0 ν τ decays obtained by Belle, leading to a good description of the corresponding spectral function up to a ππ squared invariant mass s≃1.5 GeV2. We determine the ρ(770) mass and width pole parameters and obtain the values of low-energy observables. The significance of isospin-breaking corrections is also discussed. For larger values of s, this representation is complemented with a phenomenological description to allow its implementation in the new TAUOLA hadronic currents.

Keywords

Form Factor Loop Function Dispersive Representation Muon Anomalous Magnetic Moment Vector Form Factor 

Notes

Acknowledgements

We are grateful to J.J. Sanz-Cillero and J. Portolés for a critical reading of our manuscript, and to M. Davier, R. Escribano, G. López Castro, B. Moussallam and A. Pich for illuminating discussions. P.R. acknowledges J. Bijnens and M. Jamin for useful explanations. We also thank H. Hayashii and D. Epifanov for their valuable information on the analysis carried out by the Belle Collaboration, and G. Toledo for his help on the evaluation of isospin-breaking corrections. This work has been partially supported by the Spanish grants FPA2007-60323, FPA2011-25948 and by the Spanish Consolider Ingenio 2010 Programme CPAN (CSD2007-00042). It has also been founded in part by CONICET and ANPCyT (Argentina), under grants PIP02495 and PICT-2011-0113, respectively.

References

  1. 1.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 032013 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    R.R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 648, 28–38 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    A. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 606, 12 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    F. Ambrosino et al. (KLOE Collaboration), Eur. Phys. J. C 49, 473 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 700, 102 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    D. Babusci et al. (KLOE Collaboration), arXiv:1212.4524 [hep-ex]
  9. 9.
    M.N. Achasov, K.I. Beloborodov, A.V. Berdyugin, A.G. Bogdanchikov, A.V. Bozhenok, A.D. Bukin, D.A. Bukin, T.V. Dimova et al., J. Exp. Theor. Phys. 101, 1053–1070 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968) ADSCrossRefGoogle Scholar
  11. 11.
    A. Pich, Conf. Proc. C 890523, 416 (1989) Google Scholar
  12. 12.
    J.H. Kühn, A. Santamaría, Z. Phys. C 48, 445 (1990) CrossRefGoogle Scholar
  13. 13.
    R. Decker, E. Mirkes, R. Sauer, Z. Was, Z. Phys. C 58, 445 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    R. Decker, M. Finkemeier, P. Heiliger, H.H. Jonsson, Z. Phys. C 70, 247 (1996) CrossRefGoogle Scholar
  15. 15.
    M. Finkemeier, E. Mirkes, Z. Phys. C 69, 243 (1996) CrossRefGoogle Scholar
  16. 16.
    J.H. Kühn, Z. Was, Acta Phys. Pol. B 39, 147 (2008) ADSGoogle Scholar
  17. 17.
    S. Jadach, Z. Was, Comput. Phys. Commun. 64, 267 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    S. Jadach, J.H. Kühn, Z. Was, Comput. Phys. Commun. 64, 275 (1990) ADSCrossRefGoogle Scholar
  19. 19.
    S. Jadach, Z. Was, R. Decker, J.H. Kühn, Comput. Phys. Commun. 76, 361 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    J. Portolés, Nucl. Phys. B, Proc. Suppl. 98, 210 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    P. Roig, Nucl. Phys. B, Proc. Suppl. 189, 78 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985) ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Manohar, in Les Houches 1997, Probing the Standard Model of Particle Interactions, Pt. 2 (1999), pp. 1091–1169 Google Scholar
  25. 25.
    A. Pich, in Tempe 2002, Phenomenology of Large N C QCD (2002), pp. 239–258 Google Scholar
  26. 26.
    G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989) ADSCrossRefGoogle Scholar
  27. 27.
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989) ADSCrossRefGoogle Scholar
  28. 28.
    V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich, J. Portolés, Nucl. Phys. B 753, 139 (2006) ADSCrossRefMATHGoogle Scholar
  29. 29.
    M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    M. Davier, A. Hoecker, G. López Castro, B. Malaescu, X.H. Mo, G. Toledo Sánchez, P. Wang, C.Z. Yuan et al., Eur. Phys. J. C 66, 127 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Eur. Phys. J. C 72, 1848 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184 [hep-ph]
  35. 35.
    H. Czyż, A. Denig, M. De Stefanis, S. Eidelman, K. Griessinger, A.M. Hafner, H. Hu et al., Constraining the hadronic contributions to the muon anomalous magnetic moment, in Mini-proceedings of the Workshop on “Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment” Which Included the “13th Meeting of the Radio MonteCarLow WG” and the “Satellite Meeting R-Measurements at BES-III”, Trento, April 10–12, 2013. arXiv:1306.2045 [hep-ph] Google Scholar
  36. 36.
    M. Passera, W.J. Marciano, A. Sirlin, Phys. Rev. D 78, 013009 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    J. Gasser, U.G. Meissner, Nucl. Phys. B 357, 90 (1991) ADSCrossRefGoogle Scholar
  38. 38.
    J. Bijnens, G. Colangelo, P. Talavera, J. High Energy Phys. 9805, 014 (1998) ADSGoogle Scholar
  39. 39.
    J. Bijnens, P. Talavera, J. High Energy Phys. 0203, 046 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    J.F. De Trocóniz, F.J. Ynduráin, Phys. Rev. D 65, 093001 (2002) CrossRefGoogle Scholar
  41. 41.
    J.A. Oller, E. Oset, J.E. Palomar, Phys. Rev. D 63, 114009 (2001) ADSCrossRefGoogle Scholar
  42. 42.
    F. Guerrero, A. Pich, Phys. Lett. B 412, 382 (1997) ADSCrossRefGoogle Scholar
  43. 43.
    A. Pich, J. Portolés, Phys. Rev. D 63, 093005 (2001) ADSCrossRefGoogle Scholar
  44. 44.
    C. Hanhart, Phys. Lett. B 715, 170 (2012) ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Sanz-Cillero, A. Pich, Eur. Phys. J. C 27, 587 (2003) ADSCrossRefGoogle Scholar
  46. 46.
    C.A. Domínguez, Phys. Lett. B 512, 331 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    C. Bruch, A. Khodjamirian, J.H. Kühn, Eur. Phys. J. C 39, 41 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    M. Jamin, A. Pich, J. Portolés, Phys. Lett. B 640, 176 (2006) ADSCrossRefGoogle Scholar
  49. 49.
    D.R. Boito, R. Escribano, M. Jamin, Eur. Phys. J. C 59, 821–829 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was, Phys. Rev. D 86, 113008 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    P. Roig, I.M. Nugent, T. Przedzinski, O. Shekhovtsova, Z. Was, AIP Conf. Proc. 1492, 57 (2012) ADSCrossRefGoogle Scholar
  52. 52.
    O. Shekhovtsova, I.M. Nugent, T. Przedzinski, P. Roig, Z. Was, AIP Conf. Proc. 1492, 62 (2012) ADSCrossRefGoogle Scholar
  53. 53.
    O. Shekhovtsova, I.M. Nugent, T. Przedzinski, P. Roig, Z. Was, arXiv:1301.1964 [hep-ph] and work in progress
  54. 54.
    M. Jamin, A. Pich, J. Portolés, Phys. Lett. B 664, 78 (2008) ADSCrossRefGoogle Scholar
  55. 55.
    E. Arganda, M.J. Herrero, J. Portolés, J. High Energy Phys. 0806, 079 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    D. Gomez Dumm, P. Roig, A. Pich, J. Portolés, Phys. Rev. D 81, 034031 (2010) ADSCrossRefGoogle Scholar
  57. 57.
    D. Gomez Dumm, P. Roig, A. Pich, J. Portolés, Phys. Lett. B 685, 158 (2010) ADSCrossRefGoogle Scholar
  58. 58.
    D. Gomez Dumm, P. Roig, Phys. Rev. D 86, 076009 (2012) ADSCrossRefGoogle Scholar
  59. 59.
    S. Actis et al., Eur. Phys. J. C 66, 585 (2010) CrossRefGoogle Scholar
  60. 60.
    Z.-H. Guo, P. Roig, Phys. Rev. D 82, 113016 (2010) ADSCrossRefGoogle Scholar
  61. 61.
    Z.-H. Guo, P. Roig, Nucl. Phys. B, Proc. Suppl. 218, 122 (2011) ADSCrossRefGoogle Scholar
  62. 62.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985) ADSCrossRefGoogle Scholar
  63. 63.
    D. Gomez Dumm, A. Pich, J. Portolés, Phys. Rev. D 62, 054014 (2000) ADSCrossRefGoogle Scholar
  64. 64.
    F. Guerrero, Phys. Rev. D 57, 4136 (1998) ADSCrossRefGoogle Scholar
  65. 65.
    W. Ochs, Thesis, LMU München, 1973 Google Scholar
  66. 66.
    B. Hyams et al., Nucl. Phys. B 64, 134 (1973) [AIP Conf. Proc. 13 (1973) 206] ADSCrossRefGoogle Scholar
  67. 67.
    P. Estabrooks, A.D. Martin, Nucl. Phys. B 79, 301 (1974) ADSCrossRefGoogle Scholar
  68. 68.
    S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski, G.R. Lynch, M.S. Rabin et al., Phys. Rev. D 7, 1279 (1973) ADSCrossRefGoogle Scholar
  69. 69.
    A.D. Martin, T.D. Spearman, Elementary Particle Theory (North-Holland, Amsterdam, 1970). ISBN-10: 0720401577. ISBN-13: 9780720401578. xvi, 528 pp., illus. Google Scholar
  70. 70.
    H. Leutwyler, hep-ph/0212324
  71. 71.
    E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 78, 034031 (2008) ADSCrossRefGoogle Scholar
  72. 72.
    D.R. Boito, R. Escribano, M. Jamin, J. High Energy Phys. 1009, 031 (2010) ADSCrossRefGoogle Scholar
  73. 73.
    V. Cirigliano, G. Ecker, H. Neufeld, Phys. Lett. B 513, 361 (2001) ADSCrossRefGoogle Scholar
  74. 74.
    V. Cirigliano, G. Ecker, H. Neufeld, J. High Energy Phys. 0208, 002 (2002) ADSCrossRefGoogle Scholar
  75. 75.
    F. Flores-Báez, A. Flores-Tlalpa, G. López Castro, G. Toledo Sánchez, Phys. Rev. D 74, 071301 (2006) ADSCrossRefGoogle Scholar
  76. 76.
    H. Hayashii, private communication Google Scholar
  77. 77.
    J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  78. 78.
    R. de Montessus de Ballore, Bull. Soc. Math. Fr. 30, 28–36 (1902) MATHGoogle Scholar
  79. 79.
    G.A. Baker, P. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 1996) Google Scholar
  80. 80.
    P. Masjuan, arXiv:1012.2806 [hep-ph]
  81. 81.
    J.J. Sanz-Cillero, arXiv:1002.3512 [hep-ph]
  82. 82.
    P. Masjuan, J.J. Sanz-Cillero, arXiv:1306.6308 [hep-ph]
  83. 83.
    N.N. Achasov, A.A. Kozhevnikov, Phys. Rev. D 83, 113005 (2011) [Erratum-ibid. D 85 (2012) 019901] ADSCrossRefGoogle Scholar
  84. 84.
    T. Bhattacharya, S. Willenbrock, Phys. Rev. D 47, 4022 (1993) ADSCrossRefGoogle Scholar
  85. 85.
    A. Bernicha, G. López Castro, J. Pestieau, Phys. Rev. D 50, 4454 (1994) ADSCrossRefGoogle Scholar
  86. 86.
    R. Escribano, A. Gallegos, J.L. Lucio M., G. Moreno, J. Pestieau, Eur. Phys. J. C 28, 107 (2003) ADSCrossRefGoogle Scholar
  87. 87.
    B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001) ADSCrossRefMATHGoogle Scholar
  88. 88.
    M. Feuillat, J.L. Lucio M., J. Pestieau, Phys. Lett. B 501, 37 (2001) ADSCrossRefGoogle Scholar
  89. 89.
    J.R. Peláez, Mod. Phys. Lett. A 19, 2879 (2004) ADSCrossRefGoogle Scholar
  90. 90.
    Z.Y. Zhou, G.Y. Qin, P. Zhang, Z. Xiao, H.Q. Zheng, N. Wu, J. High Energy Phys. 0502, 043 (2005) ADSCrossRefGoogle Scholar
  91. 91.
    R. García-Martín, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira, F.J. Ynduráin, Phys. Rev. D 83, 074004 (2011) ADSCrossRefGoogle Scholar
  92. 92.
    S.M. Roy, Phys. Lett. B 36, 353 (1971) ADSCrossRefGoogle Scholar
  93. 93.
    G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) ADSCrossRefGoogle Scholar
  94. 94.
    I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012) ADSCrossRefGoogle Scholar
  95. 95.
    P. Roig, Nucl. Phys. B, Proc. Suppl. 225–227, 161 (2012) CrossRefGoogle Scholar
  96. 96.
    T.N. Truong, hep-ph/9809476
  97. 97.
    J.F. de Trocóniz, F.J. Ynduráin, Phys. Rev. D 71, 073008 (2005) CrossRefGoogle Scholar
  98. 98.
    P. Masjuan, S. Peris, J.J. Sanz-Cillero, Phys. Rev. D 78, 074028 (2008) ADSCrossRefGoogle Scholar
  99. 99.
    F.-K. Guo, C. Hanhart, F.J. Llanes-Estrada, U.-G. Meissner, Phys. Lett. B 678, 90 (2009) ADSCrossRefGoogle Scholar
  100. 100.
    S. Aoki et al. (JLQCD and TWQCD Collaborations), Phys. Rev. D 80, 034508 (2009) ADSCrossRefGoogle Scholar
  101. 101.
    B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 83, 096002 (2011) ADSCrossRefGoogle Scholar
  102. 102.
    B. Ananthanarayan, I. Caprini, D. Das, I.S. Imsong, arXiv:1302.6373 [hep-ph]
  103. 103.
    G. Colangelo, M. Finkemeier, R. Urech, Phys. Rev. D 54, 4403 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.IFLP, CONICET, Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Grup de Física Teòrica, Institut de Física d’Altes EnergiesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations