Skip to main content
Log in

Top-quark production and QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We review theoretical calculations for top-quark production that include complete next-to-leading-order QCD corrections as well as higher-order soft-gluon corrections from threshold resummation. We discuss in detail the differences between various approaches that have appeared in the literature and review results for top-quark total cross sections and differential distributions at the Tevatron and the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The parametric scaling \(M_{t\bar{t}}\sim m_{t}\) is assumed, which is valid as long as the top quarks are not too highly boosted.

  2. This was shown in detail in [70, 74], and later in many other cases, including heavy-quark production in the production threshold limit [61]. The same techniques apply to PIM and 1PI kinematics but an analysis has not yet appeared in the literature.

  3. Note that independent variations of μ F and μ R in [14] do not increase the uncertainty for LHC energies.

  4. Experiment actually measures the asymmetry with respect to the rapidity difference \(y_{t}-y_{\bar{t}}\), but this is equivalent to (37) in the \(t\bar{t}\) frame so we do not distinguish this as a separate observable.

  5. In comparing results it is important to note that [16] does not expand the FB asymmetry in α s , evaluating instead the denominator of (37) numerically at NNLO with no further expansion.

References

  1. F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002

    ADS  Google Scholar 

  2. S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 74, 2632–2637 (1995). arXiv:hep-ex/9503003

    ADS  Google Scholar 

  3. W. Bernreuther, J. Phys. G 35, 083001 (2008). arXiv:0805.1333 [hep-ph]

    ADS  Google Scholar 

  4. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 303, 607 (1988)

    ADS  Google Scholar 

  5. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49–92 (1989)

    ADS  Google Scholar 

  6. W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54–82 (1989)

    ADS  Google Scholar 

  7. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507–560 (1991)

    ADS  Google Scholar 

  8. N. Kidonakis, G. Sterman, Phys. Lett. B 387, 867 (1996)

    ADS  Google Scholar 

  9. N. Kidonakis, G. Sterman, Nucl. Phys. B 505, 321 (1997). arXiv:hep-ph/9705234

    ADS  Google Scholar 

  10. N. Kidonakis, R. Vogt, Phys. Rev. D 68, 114014 (2003). arXiv:hep-ph/0308222

    ADS  Google Scholar 

  11. N. Kidonakis, R. Vogt, Phys. Rev. D 78, 074005 (2008). arXiv:0805.3844 [hep-ph]

    ADS  Google Scholar 

  12. U. Langenfeld, S. Moch, P. Uwer, Phys. Rev. D 80, 054009 (2009). arXiv:0906.5273 [hep-ph]

    ADS  Google Scholar 

  13. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 1009, 097 (2010). arXiv:1003.5827 [hep-ph]

    ADS  Google Scholar 

  14. N. Kidonakis, Phys. Rev. D 82, 114030 (2010). arXiv:1009.4935 [hep-ph]

    ADS  Google Scholar 

  15. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 1109, 070 (2011). arXiv:1103.0550 [hep-ph]

    ADS  Google Scholar 

  16. N. Kidonakis, Phys. Rev. D 84, 011504(R) (2011). arXiv:1105.5167 [hep-ph]

    ADS  Google Scholar 

  17. J.M. Campbell, R.K. Ellis, Phys. Rev. D 62, 114012 (2000). arXiv:hep-ph/0006304

    ADS  Google Scholar 

  18. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph]

    ADS  Google Scholar 

  19. R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, J. High Energy Phys. 0910, 003 (2009). arXiv:0908.4272 [hep-ph]

    ADS  Google Scholar 

  20. S. Frixione, P. Nason, B.R. Webber, J. High Energy Phys. 0308, 007 (2003). arXiv:hep-ph/0305252

    ADS  Google Scholar 

  21. M. Czakon, A. Mitov, S. Moch, Phys. Lett. B 651, 147–159 (2007). arXiv:0705.1975 [hep-ph]

    ADS  Google Scholar 

  22. M. Czakon, A. Mitov, S. Moch, Nucl. Phys. B 798, 210–250 (2008). arXiv:0707.4139 [hep-ph]

    ADS  Google Scholar 

  23. R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre, C. Studerus, J. High Energy Phys. 0807, 129 (2008). arXiv:0806.2301 [hep-ph]

    ADS  Google Scholar 

  24. R. Bonciani, A. Ferroglia, T. Gehrmann, C. Studerus, J. High Energy Phys. 0908, 067 (2009). arXiv:0906.3671 [hep-ph]

    ADS  Google Scholar 

  25. R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel, C. Studerus, J. High Energy Phys. 1101, 102 (2011). arXiv:1011.6661 [hep-ph]

    ADS  Google Scholar 

  26. M. Czakon, Phys. Lett. B 664, 307–314 (2008). arXiv:0803.1400 [hep-ph]

    ADS  Google Scholar 

  27. A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. Lett. 103, 201601 (2009). arXiv:0907.4791 [hep-ph]

    ADS  Google Scholar 

  28. A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 0911, 062 (2009). arXiv:0908.3676 [hep-ph]

    ADS  Google Scholar 

  29. J.G. Korner, Z. Merebashvili, M. Rogal, Phys. Rev. D 77, 094011 (2008). arXiv:0802.0106 [hep-ph]

    ADS  Google Scholar 

  30. C. Anastasiou, S.M. Aybat, Phys. Rev. D 78, 114006 (2008). arXiv:0809.1355 [hep-ph]

    ADS  Google Scholar 

  31. B. Kniehl, Z. Merebashvili, J.G. Korner, M. Rogal, Phys. Rev. D 78, 094013 (2008). arXiv:0809.3980 [hep-ph]

    ADS  Google Scholar 

  32. S. Dittmaier, P. Uwer, S. Weinzierl, Phys. Rev. Lett. 98, 262002 (2007). arXiv:hep-ph/0703120 [hep-ph]

    ADS  Google Scholar 

  33. S. Dittmaier, P. Uwer, S. Weinzierl, Nucl. Phys. B, Proc. Suppl. 183, 196–201 (2008). arXiv:0807.1223 [hep-ph]

    ADS  Google Scholar 

  34. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys. Rev. Lett. 104, 162002 (2010). arXiv:1002.4009 [hep-ph]

    ADS  Google Scholar 

  35. K. Melnikov, M. Schulze, Nucl. Phys. B 840, 129–159 (2010). arXiv:1004.3284 [hep-ph]

    ADS  MATH  Google Scholar 

  36. M. Czakon, Phys. Lett. B 693, 259–268 (2010). arXiv:1005.0274 [hep-ph]

    ADS  Google Scholar 

  37. M. Czakon, Nucl. Phys. B 849, 250–295 (2011). arXiv:1101.0642 [hep-ph]

    ADS  MATH  Google Scholar 

  38. C. Anastasiou, F. Herzog, A. Lazopoulos, J. High Energy Phys. 1103, 038 (2011). arXiv:1011.4867 [hep-ph]

    ADS  Google Scholar 

  39. G. Abelof, A. Gehrmann-De Ridder, J. High Energy Phys. 1104, 063 (2011). arXiv:1102.2443 [hep-ph]

    ADS  Google Scholar 

  40. W. Bernreuther, C. Bogner, O. Dekkers, J. High Energy Phys. 1106, 032 (2011). arXiv:1105.0530 [hep-ph]

    ADS  Google Scholar 

  41. A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, Phys. Rev. Lett. 106, 052001 (2011). arXiv:1012.3975 [hep-ph]

    ADS  Google Scholar 

  42. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos, M. Worek, J. High Energy Phys. 1102, 083 (2011). arXiv:1012.4230 [hep-ph]

    ADS  Google Scholar 

  43. W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer, Nucl. Phys. B 690, 81–137 (2004). arXiv:hep-ph/0403035 [hep-ph]

    ADS  MATH  Google Scholar 

  44. K. Melnikov, M. Schulze, J. High Energy Phys. 0908, 049 (2009). arXiv:0907.3090 [hep-ph]

    ADS  Google Scholar 

  45. E. Laenen, J. Smith, W.L. van Neerven, Nucl. Phys. B 369, 543 (1992)

    ADS  Google Scholar 

  46. E.L. Berger, H. Contopanagos, Phys. Lett. B 361, 115 (1995). arXiv:hep-ph/9507363

    ADS  Google Scholar 

  47. E.L. Berger, H. Contopanagos, Phys. Rev. D 54, 3085 (1996). arXiv:hep-ph/9603326

    ADS  Google Scholar 

  48. S. Catani, M.L. Mangano, P. Nason, L. Trentadue, Phys. Lett. B 378, 329 (1996). arXiv:hep-ph/9602208

    ADS  Google Scholar 

  49. R. Bonciani, S. Catani, M.L. Mangano, P. Nason, Nucl. Phys. B 529, 424 (1998). Ibid. (Erratum), B 803, 234 (2008). arXiv:hep-ph/9801375

    ADS  Google Scholar 

  50. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, J. High Energy Phys. 0809, 127 (2008). arXiv:0804.2800 [hep-ph]

    ADS  Google Scholar 

  51. S. Moch, P. Uwer, Phys. Rev. D 78, 034003 (2008). arXiv:0804.1476 [hep-ph]

    ADS  Google Scholar 

  52. S.M. Aybat, L.J. Dixon, G. Sterman, Phys. Rev. Lett. 97, 072001 (2006). arXiv:hep-ph/0606254

    ADS  Google Scholar 

  53. S.M. Aybat, L.J. Dixon, G. Sterman, Phys. Rev. D 74, 074004 (2006). arXiv:hep-ph/0607309

    ADS  Google Scholar 

  54. L.J. Dixon, L. Magnea, G. Sterman, J. High Energy Phys. 0808, 022 (2008). arXiv:0805.3515 [hep-ph]

    ADS  Google Scholar 

  55. T. Becher, M. Neubert, Phys. Rev. Lett. 102, 162001 (2009). arXiv:0901.0722 [hep-ph]

    ADS  Google Scholar 

  56. T. Becher, M. Neubert, J. High Energy Phys. 0906, 081 (2009). arXiv:0903.1126 [hep-ph]

    MathSciNet  ADS  Google Scholar 

  57. E. Gardi, L. Magnea, J. High Energy Phys. 0903, 079 (2009). arXiv:0901.1091 [hep-ph]

    ADS  Google Scholar 

  58. N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009). arXiv:0903.2561 [hep-ph]

    ADS  Google Scholar 

  59. A. Mitov, G. Sterman, I. Sung, Phys. Rev. D 79, 094015 (2009). arXiv:0903.3241 [hep-ph]

    ADS  Google Scholar 

  60. T. Becher, M. Neubert, Phys. Rev. D 79, 125004 (2009). arXiv:0904.1021 [hep-ph]

    ADS  Google Scholar 

  61. M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 828, 69–101 (2010). arXiv:0907.1443 [hep-ph]

    ADS  MATH  Google Scholar 

  62. M. Czakon, A. Mitov, G. Sterman, Phys. Rev. D 80, 074017 (2009). arXiv:0907.1790 [hep-ph]

    ADS  Google Scholar 

  63. A. Mitov, G. Sterman, I. Sung, Phys. Rev. D 82, 034020 (2010). arXiv:1005.4646 [hep-ph]

    ADS  Google Scholar 

  64. M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 842, 414–474 (2011). arXiv:1007.5414 [hep-ph]

    ADS  MATH  Google Scholar 

  65. E. Laenen, G. Oderda, G. Sterman, Phys. Lett. B 438, 173–183 (1998). arXiv:hep-ph/9806467

    ADS  Google Scholar 

  66. H. Contopanagos, E. Laenen, G. Sterman, Nucl. Phys. B 484, 303–330 (1997). arXiv:hep-ph/9604313

    ADS  Google Scholar 

  67. G. Sterman, Nucl. Phys. B 281, 310 (1987)

    ADS  Google Scholar 

  68. S. Catani, L. Trentadue, Nucl. Phys. B 327, 323 (1989)

    ADS  Google Scholar 

  69. V. Ahrens, A. Ferroglia, B.D. Pecjak, L.L. Yang, Phys. Lett. B 703, 135 (2011). arXiv:1105.5824 [hep-ph]

    ADS  Google Scholar 

  70. T. Becher, M. Neubert, Phys. Rev. Lett. 97, 082001 (2006). arXiv:hep-ph/0605050

    ADS  Google Scholar 

  71. T. Becher, M. Neubert, G. Xu, J. High Energy Phys. 0807, 030 (2008). arXiv:0710.0680 [hep-ph]

    ADS  Google Scholar 

  72. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Phys. Rev. D 79, 033013 (2009). arXiv:0808.3008 [hep-ph]

    ADS  Google Scholar 

  73. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Eur. Phys. J. C 62, 333–353 (2009). arXiv:0809.4283 [hep-ph]

    ADS  Google Scholar 

  74. T. Becher, M. Neubert, B.D. Pecjak, J. High Energy Phys. 0701, 076 (2007). arXiv:hep-ph/0607228

    ADS  Google Scholar 

  75. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Lett. B 687, 331–337 (2010). arXiv:0912.3375 [hep-ph]

    ADS  Google Scholar 

  76. M. Beneke, M. Czakon, P. Falgari, A. Mitov, C. Schwinn, Phys. Lett. B 690, 483–490 (2010). arXiv:0911.5166 [hep-ph]

    ADS  Google Scholar 

  77. M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, Comput. Phys. Commun. 182, 1034–1046 (2011). arXiv:1007.1327 [hep-ph]

    ADS  MATH  Google Scholar 

  78. N. Kidonakis, Phys. Rev. D 73, 034001 (2006). arXiv:hep-ph/0509079

    ADS  Google Scholar 

  79. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002 [hep-ph]

    ADS  Google Scholar 

  80. G. Watt, J. High Energy Phys. 1109, 069 (2011). arXiv:1106.5788 [hep-ph]

    ADS  Google Scholar 

  81. CDF Collaboration, Conf. Note 9913

  82. T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. D 81, 052011 (2010). arXiv:1002.0365 [hep-ex]

    ADS  Google Scholar 

  83. T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. D 82, 052002 (2010). arXiv:1002.2919 [hep-ex]

    ADS  Google Scholar 

  84. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 81, 092002 (2010). arXiv:1002.3783 [hep-ex]

    ADS  Google Scholar 

  85. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 071102 (2011). arXiv:1007.4423 [hep-ex]

    ADS  Google Scholar 

  86. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 192004 (2008). arXiv:0803.2779 [hep-ex]

    ADS  Google Scholar 

  87. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 80, 071102 (2009). arXiv:0903.5525 [hep-ex]

    ADS  Google Scholar 

  88. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 032002 (2010). arXiv:0911.4286 [hep-ex]

    ADS  Google Scholar 

  89. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 071102 (2010). arXiv:1008.4284 [hep-ex]

    ADS  Google Scholar 

  90. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 012008 (2011). arXiv:1101.0124 [hep-ex]

    ADS  Google Scholar 

  91. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 704, 403 (2011). arXiv:1105.5384 [hep-ex]

    ADS  Google Scholar 

  92. ATLAS Collaboration, ATLAS-CONF-2011-040

  93. ATLAS Collaboration, ATLAS-CONF-2011-100

  94. ATLAS Collaboration, ATLAS-CONF-2011-108

  95. V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 695, 424–443 (2011). arXiv:1010.5994 [hep-ex]

    ADS  Google Scholar 

  96. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1107, 049 (2011). arXiv:1105.5661 [hep-ex]

    ADS  Google Scholar 

  97. S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 71, 1721 (2011). arXiv:1106.0902 [hep-ex]

    ADS  Google Scholar 

  98. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 703, 422 (2011). arXiv:1104.2887 [hep-ex]

    ADS  Google Scholar 

  99. ATLAS Collaboration, ATLAS-CONF-2011-054

  100. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 222003 (2009). arXiv:0903.2850 [hep-ex]

    ADS  Google Scholar 

  101. R. Frederix, F. Maltoni, J. High Energy Phys. 0901, 047 (2009). arXiv:0712.2355 [hep-ph]

    ADS  Google Scholar 

  102. W. Bernreuther, M. Fuecker, Z.-G. Si, Phys. Rev. D 74, 113005 (2006). arXiv:hep-ph/0610334

    ADS  Google Scholar 

  103. J.H. Kuhn, A. Scharf, P. Uwer, Eur. Phys. J. C 51, 37–53 (2007). arXiv:hep-ph/0610335

    ADS  Google Scholar 

  104. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 515–521 (2010). arXiv:1001.1900 [hep-ex]

    ADS  Google Scholar 

  105. J.F. Kamenik, J. Shu, J. Zupan arXiv:1107.5257 [hep-ph]

  106. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011). arXiv:1101.0034 [hep-ex]

    ADS  Google Scholar 

  107. J.H. Kuhn, G. Rodrigo, Phys. Rev. Lett. 81, 49–52 (1998). arXiv:hep-ph/9802268

    ADS  Google Scholar 

  108. J.H. Kuhn, G. Rodrigo, Phys. Rev. D 59, 054017 (1999). arXiv:hep-ph/9807420

    ADS  Google Scholar 

  109. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. D 84, 074004 (2011). arXiv:1106.6051 [hep-ph]

    ADS  Google Scholar 

  110. L.G. Almeida, G. Sterman, W. Vogelsang, Phys. Rev. D 78, 014008 (2008). arXiv:0805.1885 [hep-ph]

    ADS  Google Scholar 

  111. W. Bernreuther, Z.-G. Si, Nucl. Phys. B 837, 90–121 (2010). arXiv:1003.3926 [hep-ph]

    ADS  MATH  Google Scholar 

  112. W. Hollik, D. Pagani, Phys. Rev. D 84, 093003 (2011). arXiv:1107.2606 [hep-ph]

    ADS  Google Scholar 

  113. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850 [hep-ex]

    ADS  Google Scholar 

  114. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 363–369 (2010). arXiv:0907.4259 [hep-ex]

    ADS  Google Scholar 

  115. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 690, 5–14 (2010). arXiv:0912.1066 [hep-ex]

    ADS  Google Scholar 

  116. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 705, 313 (2011). arXiv:1105.2788 [hep-ex]

    ADS  Google Scholar 

  117. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex]

    ADS  Google Scholar 

  118. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 82, 112005 (2010). arXiv:1004.1181 [hep-ex]

    ADS  Google Scholar 

  119. T.E.W. Group (CDF and D0 Collaboration), arXiv:0908.2171 [hep-ex]

  120. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 091802 (2011). arXiv:1106.3052 [hep-ex]

    ADS  Google Scholar 

  121. ATLAS Collaboration, ATLAS-CONF-2011-088

  122. N. Kidonakis, Phys. Rev. D 83, 091503(R) (2011). arXiv:1103.2792 [hep-ph]

    ADS  Google Scholar 

  123. N. Kidonakis, Phys. Rev. D 81, 054028 (2010). arXiv:1001.5034 [hep-ph]

    ADS  Google Scholar 

  124. N. Kidonakis, Phys. Rev. D 82, 054018 (2010). arXiv:1005.4451 [hep-ph]

    ADS  Google Scholar 

  125. B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055

    ADS  Google Scholar 

  126. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005 [hep-ph]

    ADS  Google Scholar 

  127. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, J. High Energy Phys. 0910, 042 (2009). arXiv:0907.3933 [hep-ph]

    ADS  Google Scholar 

  128. P. Falgari, P. Mellor, A. Signer, Phys. Rev. D 82, 054028 (2010). arXiv:1007.0893 [hep-ph]

    ADS  Google Scholar 

  129. R. Schwienhorst, C.-P. Yuan, C. Mueller, Q.-H. Cao, Phys. Rev. D 83, 034019 (2011). arXiv:1012.5132 [hep-ph]

    ADS  Google Scholar 

  130. P. Falgari, F. Giannuzzi, P. Mellor, A. Signer, Phys. Rev. D 83, 094013 (2011). arXiv:1102.5267 [hep-ph]

    ADS  Google Scholar 

  131. N. Kidonakis, Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287

    ADS  Google Scholar 

  132. N. Kidonakis, Phys. Rev. D 75, 071501(R) (2007). arXiv:hep-ph/0701080

    ADS  Google Scholar 

  133. H.X. Zhu, C.S. Li, J. Wang, J. Zhang, J. High Energy Phys. 1102, 099 (2011). arXiv:1006.0681 [hep-ph]

    ADS  Google Scholar 

  134. S. Zhu, Phys. Lett. B 524, 283–288 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

The work of N.K. was supported by the National Science Foundation under Grant No. PHY 0855421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kidonakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidonakis, N., Pecjak, B.D. Top-quark production and QCD. Eur. Phys. J. C 72, 2084 (2012). https://doi.org/10.1140/epjc/s10052-012-2084-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2084-0

Keywords

Navigation