Advertisement

Top-quark production and QCD

Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Top and flavour physics in the LHC era

Abstract

We review theoretical calculations for top-quark production that include complete next-to-leading-order QCD corrections as well as higher-order soft-gluon corrections from threshold resummation. We discuss in detail the differences between various approaches that have appeared in the literature and review results for top-quark total cross sections and differential distributions at the Tevatron and the LHC.

Keywords

Soft Function Soft Limit Partonic Cross Section Approximate NNLO Soft Gluon Resummation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work of N.K. was supported by the National Science Foundation under Grant No. PHY 0855421.

References

  1. 1.
    F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002 ADSGoogle Scholar
  2. 2.
    S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 74, 2632–2637 (1995). arXiv:hep-ex/9503003 ADSGoogle Scholar
  3. 3.
    W. Bernreuther, J. Phys. G 35, 083001 (2008). arXiv:0805.1333 [hep-ph] ADSGoogle Scholar
  4. 4.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 303, 607 (1988) ADSGoogle Scholar
  5. 5.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49–92 (1989) ADSGoogle Scholar
  6. 6.
    W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54–82 (1989) ADSGoogle Scholar
  7. 7.
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507–560 (1991) ADSGoogle Scholar
  8. 8.
    N. Kidonakis, G. Sterman, Phys. Lett. B 387, 867 (1996) ADSGoogle Scholar
  9. 9.
    N. Kidonakis, G. Sterman, Nucl. Phys. B 505, 321 (1997). arXiv:hep-ph/9705234 ADSGoogle Scholar
  10. 10.
    N. Kidonakis, R. Vogt, Phys. Rev. D 68, 114014 (2003). arXiv:hep-ph/0308222 ADSGoogle Scholar
  11. 11.
    N. Kidonakis, R. Vogt, Phys. Rev. D 78, 074005 (2008). arXiv:0805.3844 [hep-ph] ADSGoogle Scholar
  12. 12.
    U. Langenfeld, S. Moch, P. Uwer, Phys. Rev. D 80, 054009 (2009). arXiv:0906.5273 [hep-ph] ADSGoogle Scholar
  13. 13.
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 1009, 097 (2010). arXiv:1003.5827 [hep-ph] ADSGoogle Scholar
  14. 14.
    N. Kidonakis, Phys. Rev. D 82, 114030 (2010). arXiv:1009.4935 [hep-ph] ADSGoogle Scholar
  15. 15.
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 1109, 070 (2011). arXiv:1103.0550 [hep-ph] ADSGoogle Scholar
  16. 16.
    N. Kidonakis, Phys. Rev. D 84, 011504(R) (2011). arXiv:1105.5167 [hep-ph] ADSGoogle Scholar
  17. 17.
    J.M. Campbell, R.K. Ellis, Phys. Rev. D 62, 114012 (2000). arXiv:hep-ph/0006304 ADSGoogle Scholar
  18. 18.
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph] ADSGoogle Scholar
  19. 19.
    R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, J. High Energy Phys. 0910, 003 (2009). arXiv:0908.4272 [hep-ph] ADSGoogle Scholar
  20. 20.
    S. Frixione, P. Nason, B.R. Webber, J. High Energy Phys. 0308, 007 (2003). arXiv:hep-ph/0305252 ADSGoogle Scholar
  21. 21.
    M. Czakon, A. Mitov, S. Moch, Phys. Lett. B 651, 147–159 (2007). arXiv:0705.1975 [hep-ph] ADSGoogle Scholar
  22. 22.
    M. Czakon, A. Mitov, S. Moch, Nucl. Phys. B 798, 210–250 (2008). arXiv:0707.4139 [hep-ph] ADSGoogle Scholar
  23. 23.
    R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre, C. Studerus, J. High Energy Phys. 0807, 129 (2008). arXiv:0806.2301 [hep-ph] ADSGoogle Scholar
  24. 24.
    R. Bonciani, A. Ferroglia, T. Gehrmann, C. Studerus, J. High Energy Phys. 0908, 067 (2009). arXiv:0906.3671 [hep-ph] ADSGoogle Scholar
  25. 25.
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel, C. Studerus, J. High Energy Phys. 1101, 102 (2011). arXiv:1011.6661 [hep-ph] ADSGoogle Scholar
  26. 26.
    M. Czakon, Phys. Lett. B 664, 307–314 (2008). arXiv:0803.1400 [hep-ph] ADSGoogle Scholar
  27. 27.
    A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. Lett. 103, 201601 (2009). arXiv:0907.4791 [hep-ph] ADSGoogle Scholar
  28. 28.
    A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, J. High Energy Phys. 0911, 062 (2009). arXiv:0908.3676 [hep-ph] ADSGoogle Scholar
  29. 29.
    J.G. Korner, Z. Merebashvili, M. Rogal, Phys. Rev. D 77, 094011 (2008). arXiv:0802.0106 [hep-ph] ADSGoogle Scholar
  30. 30.
    C. Anastasiou, S.M. Aybat, Phys. Rev. D 78, 114006 (2008). arXiv:0809.1355 [hep-ph] ADSGoogle Scholar
  31. 31.
    B. Kniehl, Z. Merebashvili, J.G. Korner, M. Rogal, Phys. Rev. D 78, 094013 (2008). arXiv:0809.3980 [hep-ph] ADSGoogle Scholar
  32. 32.
    S. Dittmaier, P. Uwer, S. Weinzierl, Phys. Rev. Lett. 98, 262002 (2007). arXiv:hep-ph/0703120 [hep-ph] ADSGoogle Scholar
  33. 33.
    S. Dittmaier, P. Uwer, S. Weinzierl, Nucl. Phys. B, Proc. Suppl. 183, 196–201 (2008). arXiv:0807.1223 [hep-ph] ADSGoogle Scholar
  34. 34.
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys. Rev. Lett. 104, 162002 (2010). arXiv:1002.4009 [hep-ph] ADSGoogle Scholar
  35. 35.
    K. Melnikov, M. Schulze, Nucl. Phys. B 840, 129–159 (2010). arXiv:1004.3284 [hep-ph] ADSMATHGoogle Scholar
  36. 36.
    M. Czakon, Phys. Lett. B 693, 259–268 (2010). arXiv:1005.0274 [hep-ph] ADSGoogle Scholar
  37. 37.
    M. Czakon, Nucl. Phys. B 849, 250–295 (2011). arXiv:1101.0642 [hep-ph] ADSMATHGoogle Scholar
  38. 38.
    C. Anastasiou, F. Herzog, A. Lazopoulos, J. High Energy Phys. 1103, 038 (2011). arXiv:1011.4867 [hep-ph] ADSGoogle Scholar
  39. 39.
    G. Abelof, A. Gehrmann-De Ridder, J. High Energy Phys. 1104, 063 (2011). arXiv:1102.2443 [hep-ph] ADSGoogle Scholar
  40. 40.
    W. Bernreuther, C. Bogner, O. Dekkers, J. High Energy Phys. 1106, 032 (2011). arXiv:1105.0530 [hep-ph] ADSGoogle Scholar
  41. 41.
    A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, Phys. Rev. Lett. 106, 052001 (2011). arXiv:1012.3975 [hep-ph] ADSGoogle Scholar
  42. 42.
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos, M. Worek, J. High Energy Phys. 1102, 083 (2011). arXiv:1012.4230 [hep-ph] ADSGoogle Scholar
  43. 43.
    W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer, Nucl. Phys. B 690, 81–137 (2004). arXiv:hep-ph/0403035 [hep-ph] ADSMATHGoogle Scholar
  44. 44.
    K. Melnikov, M. Schulze, J. High Energy Phys. 0908, 049 (2009). arXiv:0907.3090 [hep-ph] ADSGoogle Scholar
  45. 45.
    E. Laenen, J. Smith, W.L. van Neerven, Nucl. Phys. B 369, 543 (1992) ADSGoogle Scholar
  46. 46.
    E.L. Berger, H. Contopanagos, Phys. Lett. B 361, 115 (1995). arXiv:hep-ph/9507363 ADSGoogle Scholar
  47. 47.
    E.L. Berger, H. Contopanagos, Phys. Rev. D 54, 3085 (1996). arXiv:hep-ph/9603326 ADSGoogle Scholar
  48. 48.
    S. Catani, M.L. Mangano, P. Nason, L. Trentadue, Phys. Lett. B 378, 329 (1996). arXiv:hep-ph/9602208 ADSGoogle Scholar
  49. 49.
    R. Bonciani, S. Catani, M.L. Mangano, P. Nason, Nucl. Phys. B 529, 424 (1998). Ibid. (Erratum), B 803, 234 (2008). arXiv:hep-ph/9801375 ADSGoogle Scholar
  50. 50.
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, J. High Energy Phys. 0809, 127 (2008). arXiv:0804.2800 [hep-ph] ADSGoogle Scholar
  51. 51.
    S. Moch, P. Uwer, Phys. Rev. D 78, 034003 (2008). arXiv:0804.1476 [hep-ph] ADSGoogle Scholar
  52. 52.
    S.M. Aybat, L.J. Dixon, G. Sterman, Phys. Rev. Lett. 97, 072001 (2006). arXiv:hep-ph/0606254 ADSGoogle Scholar
  53. 53.
    S.M. Aybat, L.J. Dixon, G. Sterman, Phys. Rev. D 74, 074004 (2006). arXiv:hep-ph/0607309 ADSGoogle Scholar
  54. 54.
    L.J. Dixon, L. Magnea, G. Sterman, J. High Energy Phys. 0808, 022 (2008). arXiv:0805.3515 [hep-ph] ADSGoogle Scholar
  55. 55.
    T. Becher, M. Neubert, Phys. Rev. Lett. 102, 162001 (2009). arXiv:0901.0722 [hep-ph] ADSGoogle Scholar
  56. 56.
    T. Becher, M. Neubert, J. High Energy Phys. 0906, 081 (2009). arXiv:0903.1126 [hep-ph] MathSciNetADSGoogle Scholar
  57. 57.
    E. Gardi, L. Magnea, J. High Energy Phys. 0903, 079 (2009). arXiv:0901.1091 [hep-ph] ADSGoogle Scholar
  58. 58.
    N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009). arXiv:0903.2561 [hep-ph] ADSGoogle Scholar
  59. 59.
    A. Mitov, G. Sterman, I. Sung, Phys. Rev. D 79, 094015 (2009). arXiv:0903.3241 [hep-ph] ADSGoogle Scholar
  60. 60.
    T. Becher, M. Neubert, Phys. Rev. D 79, 125004 (2009). arXiv:0904.1021 [hep-ph] ADSGoogle Scholar
  61. 61.
    M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 828, 69–101 (2010). arXiv:0907.1443 [hep-ph] ADSMATHGoogle Scholar
  62. 62.
    M. Czakon, A. Mitov, G. Sterman, Phys. Rev. D 80, 074017 (2009). arXiv:0907.1790 [hep-ph] ADSGoogle Scholar
  63. 63.
    A. Mitov, G. Sterman, I. Sung, Phys. Rev. D 82, 034020 (2010). arXiv:1005.4646 [hep-ph] ADSGoogle Scholar
  64. 64.
    M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 842, 414–474 (2011). arXiv:1007.5414 [hep-ph] ADSMATHGoogle Scholar
  65. 65.
    E. Laenen, G. Oderda, G. Sterman, Phys. Lett. B 438, 173–183 (1998). arXiv:hep-ph/9806467 ADSGoogle Scholar
  66. 66.
    H. Contopanagos, E. Laenen, G. Sterman, Nucl. Phys. B 484, 303–330 (1997). arXiv:hep-ph/9604313 ADSGoogle Scholar
  67. 67.
    G. Sterman, Nucl. Phys. B 281, 310 (1987) ADSGoogle Scholar
  68. 68.
    S. Catani, L. Trentadue, Nucl. Phys. B 327, 323 (1989) ADSGoogle Scholar
  69. 69.
    V. Ahrens, A. Ferroglia, B.D. Pecjak, L.L. Yang, Phys. Lett. B 703, 135 (2011). arXiv:1105.5824 [hep-ph] ADSGoogle Scholar
  70. 70.
    T. Becher, M. Neubert, Phys. Rev. Lett. 97, 082001 (2006). arXiv:hep-ph/0605050 ADSGoogle Scholar
  71. 71.
    T. Becher, M. Neubert, G. Xu, J. High Energy Phys. 0807, 030 (2008). arXiv:0710.0680 [hep-ph] ADSGoogle Scholar
  72. 72.
    V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Phys. Rev. D 79, 033013 (2009). arXiv:0808.3008 [hep-ph] ADSGoogle Scholar
  73. 73.
    V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Eur. Phys. J. C 62, 333–353 (2009). arXiv:0809.4283 [hep-ph] ADSGoogle Scholar
  74. 74.
    T. Becher, M. Neubert, B.D. Pecjak, J. High Energy Phys. 0701, 076 (2007). arXiv:hep-ph/0607228 ADSGoogle Scholar
  75. 75.
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Lett. B 687, 331–337 (2010). arXiv:0912.3375 [hep-ph] ADSGoogle Scholar
  76. 76.
    M. Beneke, M. Czakon, P. Falgari, A. Mitov, C. Schwinn, Phys. Lett. B 690, 483–490 (2010). arXiv:0911.5166 [hep-ph] ADSGoogle Scholar
  77. 77.
    M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, Comput. Phys. Commun. 182, 1034–1046 (2011). arXiv:1007.1327 [hep-ph] ADSMATHGoogle Scholar
  78. 78.
    N. Kidonakis, Phys. Rev. D 73, 034001 (2006). arXiv:hep-ph/0509079 ADSGoogle Scholar
  79. 79.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002 [hep-ph] ADSGoogle Scholar
  80. 80.
    G. Watt, J. High Energy Phys. 1109, 069 (2011). arXiv:1106.5788 [hep-ph] ADSGoogle Scholar
  81. 81.
    CDF Collaboration, Conf. Note 9913 Google Scholar
  82. 82.
    T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. D 81, 052011 (2010). arXiv:1002.0365 [hep-ex] ADSGoogle Scholar
  83. 83.
    T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. D 82, 052002 (2010). arXiv:1002.2919 [hep-ex] ADSGoogle Scholar
  84. 84.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 81, 092002 (2010). arXiv:1002.3783 [hep-ex] ADSGoogle Scholar
  85. 85.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 071102 (2011). arXiv:1007.4423 [hep-ex] ADSGoogle Scholar
  86. 86.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 192004 (2008). arXiv:0803.2779 [hep-ex] ADSGoogle Scholar
  87. 87.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 80, 071102 (2009). arXiv:0903.5525 [hep-ex] ADSGoogle Scholar
  88. 88.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 032002 (2010). arXiv:0911.4286 [hep-ex] ADSGoogle Scholar
  89. 89.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 071102 (2010). arXiv:1008.4284 [hep-ex] ADSGoogle Scholar
  90. 90.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 012008 (2011). arXiv:1101.0124 [hep-ex] ADSGoogle Scholar
  91. 91.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 704, 403 (2011). arXiv:1105.5384 [hep-ex] ADSGoogle Scholar
  92. 92.
    ATLAS Collaboration, ATLAS-CONF-2011-040 Google Scholar
  93. 93.
    ATLAS Collaboration, ATLAS-CONF-2011-100 Google Scholar
  94. 94.
    ATLAS Collaboration, ATLAS-CONF-2011-108 Google Scholar
  95. 95.
    V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 695, 424–443 (2011). arXiv:1010.5994 [hep-ex] ADSGoogle Scholar
  96. 96.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1107, 049 (2011). arXiv:1105.5661 [hep-ex] ADSGoogle Scholar
  97. 97.
    S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 71, 1721 (2011). arXiv:1106.0902 [hep-ex] ADSGoogle Scholar
  98. 98.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 703, 422 (2011). arXiv:1104.2887 [hep-ex] ADSGoogle Scholar
  99. 99.
    ATLAS Collaboration, ATLAS-CONF-2011-054 Google Scholar
  100. 100.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 222003 (2009). arXiv:0903.2850 [hep-ex] ADSGoogle Scholar
  101. 101.
    R. Frederix, F. Maltoni, J. High Energy Phys. 0901, 047 (2009). arXiv:0712.2355 [hep-ph] ADSGoogle Scholar
  102. 102.
    W. Bernreuther, M. Fuecker, Z.-G. Si, Phys. Rev. D 74, 113005 (2006). arXiv:hep-ph/0610334 ADSGoogle Scholar
  103. 103.
    J.H. Kuhn, A. Scharf, P. Uwer, Eur. Phys. J. C 51, 37–53 (2007). arXiv:hep-ph/0610335 ADSGoogle Scholar
  104. 104.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 515–521 (2010). arXiv:1001.1900 [hep-ex] ADSGoogle Scholar
  105. 105.
    J.F. Kamenik, J. Shu, J. Zupan arXiv:1107.5257 [hep-ph]
  106. 106.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011). arXiv:1101.0034 [hep-ex] ADSGoogle Scholar
  107. 107.
    J.H. Kuhn, G. Rodrigo, Phys. Rev. Lett. 81, 49–52 (1998). arXiv:hep-ph/9802268 ADSGoogle Scholar
  108. 108.
    J.H. Kuhn, G. Rodrigo, Phys. Rev. D 59, 054017 (1999). arXiv:hep-ph/9807420 ADSGoogle Scholar
  109. 109.
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. D 84, 074004 (2011). arXiv:1106.6051 [hep-ph] ADSGoogle Scholar
  110. 110.
    L.G. Almeida, G. Sterman, W. Vogelsang, Phys. Rev. D 78, 014008 (2008). arXiv:0805.1885 [hep-ph] ADSGoogle Scholar
  111. 111.
    W. Bernreuther, Z.-G. Si, Nucl. Phys. B 837, 90–121 (2010). arXiv:1003.3926 [hep-ph] ADSMATHGoogle Scholar
  112. 112.
    W. Hollik, D. Pagani, Phys. Rev. D 84, 093003 (2011). arXiv:1107.2606 [hep-ph] ADSGoogle Scholar
  113. 113.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850 [hep-ex] ADSGoogle Scholar
  114. 114.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 363–369 (2010). arXiv:0907.4259 [hep-ex] ADSGoogle Scholar
  115. 115.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 690, 5–14 (2010). arXiv:0912.1066 [hep-ex] ADSGoogle Scholar
  116. 116.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 705, 313 (2011). arXiv:1105.2788 [hep-ex] ADSGoogle Scholar
  117. 117.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex] ADSGoogle Scholar
  118. 118.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 82, 112005 (2010). arXiv:1004.1181 [hep-ex] ADSGoogle Scholar
  119. 119.
    T.E.W. Group (CDF and D0 Collaboration), arXiv:0908.2171 [hep-ex]
  120. 120.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 091802 (2011). arXiv:1106.3052 [hep-ex] ADSGoogle Scholar
  121. 121.
    ATLAS Collaboration, ATLAS-CONF-2011-088 Google Scholar
  122. 122.
    N. Kidonakis, Phys. Rev. D 83, 091503(R) (2011). arXiv:1103.2792 [hep-ph] ADSGoogle Scholar
  123. 123.
    N. Kidonakis, Phys. Rev. D 81, 054028 (2010). arXiv:1001.5034 [hep-ph] ADSGoogle Scholar
  124. 124.
    N. Kidonakis, Phys. Rev. D 82, 054018 (2010). arXiv:1005.4451 [hep-ph] ADSGoogle Scholar
  125. 125.
    B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055 ADSGoogle Scholar
  126. 126.
    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005 [hep-ph] ADSGoogle Scholar
  127. 127.
    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, J. High Energy Phys. 0910, 042 (2009). arXiv:0907.3933 [hep-ph] ADSGoogle Scholar
  128. 128.
    P. Falgari, P. Mellor, A. Signer, Phys. Rev. D 82, 054028 (2010). arXiv:1007.0893 [hep-ph] ADSGoogle Scholar
  129. 129.
    R. Schwienhorst, C.-P. Yuan, C. Mueller, Q.-H. Cao, Phys. Rev. D 83, 034019 (2011). arXiv:1012.5132 [hep-ph] ADSGoogle Scholar
  130. 130.
    P. Falgari, F. Giannuzzi, P. Mellor, A. Signer, Phys. Rev. D 83, 094013 (2011). arXiv:1102.5267 [hep-ph] ADSGoogle Scholar
  131. 131.
    N. Kidonakis, Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287 ADSGoogle Scholar
  132. 132.
    N. Kidonakis, Phys. Rev. D 75, 071501(R) (2007). arXiv:hep-ph/0701080 ADSGoogle Scholar
  133. 133.
    H.X. Zhu, C.S. Li, J. Wang, J. Zhang, J. High Energy Phys. 1102, 099 (2011). arXiv:1006.0681 [hep-ph] ADSGoogle Scholar
  134. 134.
    S. Zhu, Phys. Lett. B 524, 283–288 (2002) ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Kennesaw State UniversityKennesawUSA
  2. 2.Institut für Physik (THEP)Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations