Abstract
Motivated by recent experimental observations [Rowley et al. in Phys Rev 96:020407, 2017] on hexagonal ferrites, we revisit the phase diagrams of diluted magnets close to the lattice percolation threshold. We perform large-scale Monte Carlo simulations of XY and Heisenberg models on both simple cubic lattices and lattices representing the crystal structure of the hexagonal ferrites. Close to the percolation threshold \(p_\mathrm{c}\), we find that the magnetic ordering temperature \(T_\mathrm{c}\) depends on the dilution p via the power law \(T_\mathrm{c} \sim |p-p_\mathrm{c}|^\phi \) with exponent \(\phi =1.09\), in agreement with classical percolation theory. However, this asymptotic critical region is very narrow, \(|p-p_\mathrm{c}| \lesssim 0.04\). Outside of it, the shape of the phase boundary is well described, over a wide range of dilutions, by a nonuniversal power law with an exponent somewhat below unity. Nonetheless, the percolation scenario does not reproduce the experimentally observed relation \(T_\mathrm{c} \sim (x_\mathrm{c} -x)^{2/3}\) in PbFe\(_{12-x}\)Ga\(_x\)O\(_{19}\). We discuss the generality of our findings as well as implications for the physics of diluted hexagonal ferrites.
Graphic abstract

This is a preview of subscription content, access via your institution.











Data Availability Statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.]
Notes
- 1.
The lattice in question is the lattice of exchange interactions between the Fe ions.
- 2.
References
- 1.
G. Grinstein, A. Luther, Phys. Rev. B 13, 1329 (1976)
- 2.
D.S. Fisher, Phys. Rev. Lett. 69, 534 (1992)
- 3.
D.S. Fisher, Phys. Rev. B 51, 6411 (1995)
- 4.
R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)
- 5.
M. Thill, D.A. Huse, Phys. A 214, 321 (1995)
- 6.
A.P. Young, H. Rieger, Phys. Rev. B 53, 8486 (1996)
- 7.
T. Vojta, Phys. Rev. Lett. 90, 107202 (2003)
- 8.
R. Sknepnek, T. Vojta, Phys. Rev. B 69, 174410 (2004)
- 9.
G. Schehr, H. Rieger, Phys. Rev. Lett. 96, 227201 (2006)
- 10.
J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100, 240601 (2008)
- 11.
T. Vojta, J. Phys. A 39, R143 (2006)
- 12.
T. Vojta, J. Low Temp. Phys. 161, 299 (2010)
- 13.
T. Vojta, Ann. Rev. Condens. Mat. Phys. 10, 233 (2019)
- 14.
D. Stauffer, A. Aharony, Introduction to Percolation Theory (CRC Press, Boca Raton, 1991)
- 15.
S.E. Rowley, T. Vojta, A.T. Jones, W. Guo, J. Oliveira, F.D. Morrison, N. Lindfield, E. Baggio Saitovitch, B.E. Watts, J.F. Scott, Phys. Rev. B 96, 020407 (2017)
- 16.
G. Albanese, F. Leccabue, B.E. Watts, S. Díaz-Castañón, J. Mat. Sci. 37, 3759 (2002)
- 17.
A. Coniglio, Phys. Rev. Lett. 46, 250 (1981)
- 18.
T. Vojta, J. A. Hoyos, in Recent Progress in Many-Body Theories, ed. by J. Boronat, G. Astrakharchik, F. Mazzanti (World Scientific, Singapore, 2008) p. 235
- 19.
C. Wu, Z. Yu, K. Sun, J. Nie, R. Guo, H. Liu, X. Jiang, Z. Lan, Sci. Rep. 6, 36200 (2016)
- 20.
E. Shender, B. Shklovskii, Phys. Lett. A 55, 77 (1975)
- 21.
B. Kozlov, M. Laguës, Phys. A: Statist. Mech. Appl. 389, 5339 (2010)
- 22.
J. Wang, Z. Zhou, W. Zhang, T.M. Garoni, Y. Deng, Phys. Rev. E 87, 052107 (2013a)
- 23.
A.B. Harris, T.C. Lubensky, J. Phys. A 17, L609 (1984)
- 24.
A.B. Harris, A. Aharony, Phys. Rev. B 40, 7230 (1989)
- 25.
U. Wolff, Phys. Rev. Lett. 62, 361 (1989)
- 26.
N. Metropolis, S. Ulam, J. Am. Statist. Assoc. 44, 335 (1949)
- 27.
H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998)
- 28.
T. Vojta, R. Sknepnek, Phys. Rev. B 74, 094415 (2006)
- 29.
Q. Zhu, X. Wan, R. Narayanan, J.A. Hoyos, T. Vojta, Phys. Rev. B 91, 224201 (2015)
- 30.
K. Binder, Zeitschr. für Phys. B 43, 119 (1981)
- 31.
W. Selke, L.N. Shchur, J. Phys. A 38, L739 (2005)
- 32.
A.P. Gottlob, M. Hasenbusch, Phys. A Statist. Mech. Appl. 201, 593 (1993)
- 33.
R.G. Brown, M. Ciftan, Phys. Rev. B 74, 224413 (2006)
- 34.
S.E. Rowley, Y.-S. Chai, S.-P. Shen, Y. Sun, A.T. Jones, B.E. Watts, J.F. Scott, Sci. Rep. 6, 25724 (2016)
Acknowledgements
We acknowledge support from the NSF under Grant nos. DMR-1506152, DMR-1828489, and OAC-1919789. The simulations were performed on the Pegasus and Foundry clusters at Missouri S&T. We also thank Martin Puschmann for helpful discussions.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khairnar, G., Lerch, C. & Vojta, T. Phase boundary near a magnetic percolation transition. Eur. Phys. J. B 94, 43 (2021). https://doi.org/10.1140/epjb/s10051-021-00056-4
Received:
Accepted:
Published: