Skip to main content
Log in

Occupation probabilities as variables in electronic structure theory: cooper pairing, OP-NSOFT-Cs,t, and the homogeneous electron liquid

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The energy functional of a novel electronic structure theory, OP-NSOFT, has as variables the natural spin orbitals (NSO) of the trial function and their joint occupation probabilities in the search for the ground state energy. When occupancy is restricted to the spin-paired NSOs of DOCI, the resulting theory, OP-NSOFT-0, scales as M3, with M the size of the one-electron basis set. Accurate results were obtained for small molecules, particularly near dissociation where single reference theories like DFT are inaccurate. The homogeneous electron liquid (HEL) could serve as a test bed of OP-NSOFT for condensed systems, but OP-NSOFT-0 reduces to the Hartree–Fock approximation for the HEL. Cooper pairing is introduced instead, both singlet pairing, OP-NOFT-Cs, and fully polarized triplet pairing, OP-NSOFT-Ct. The former yields 1/3 of the diffusion-Monte-Carlo correlation energy, the latter 1/2 to 1/3 with decreasing electron density for rs values between 1 and 10. Both yield the discontinuity in the single-particle occupation number required by the Luttinger theorem. Two-state joint occupation probabilities illustrate the importance of electron–electron small-angle scattering in establishing electron correlation in the unpolarized HEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  3. T.L. Gilbert, Phys. Rev. B 12, 2111 (1975)

    ADS  Google Scholar 

  4. M. Piris, Phys. Rev. Lett. 119, 063002 (2017)

    ADS  Google Scholar 

  5. R. van Meer, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 148, 104102 (2018)

    ADS  Google Scholar 

  6. K. Pernal, K.J.H. Giesbertz, Top. Curr. Chem. 368, 125 (2016)

    Google Scholar 

  7. J.M. Herbert, J.E. Harriman, Chem. Phys. Lett. 382, 142 (2003)

    ADS  Google Scholar 

  8. M. Piris, Int. J. Quantum Chem. 113, 620 (2013)

    Google Scholar 

  9. M. Piris, J.M. Ugalde, Int. J. Quantum Chem. 114, 1169 (2014)

    Google Scholar 

  10. A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

    ADS  Google Scholar 

  11. C. Garrod, J.K. Percus, J. Math. Phys. 5, 1756 (1964)

    ADS  Google Scholar 

  12. J. Percus, Comput. Theor. Chem. 1003, 2 (2013)

    Google Scholar 

  13. Z. Zhao, B.J. Braams, M. Fukuda, M.L. Overton, J.K. Percus, J. Chem. Phys. 120, 2095 2004

    ADS  Google Scholar 

  14. M. Nakata, H. Nakatusuji, M. Ehara, J. Chem. Phys. 114, 8282 (2001)

    ADS  Google Scholar 

  15. G. Gidofalvi, D.A. Mazziotti, J. Chem. Phys. 129, 134108 (2008)

    ADS  Google Scholar 

  16. R. Gebauer, M.H. Cohen, R. Car, Proc. Nat. Acad. Sci. 113, 46 (2016); referred to as I. There, the acronym used was OP-NOFT for occupation-probability-based natural-orbital functional theory, which here has been replaced by OP-NSOFT occupation-probability-based natural-spin-orbital functional theory as more accurate

    Google Scholar 

  17. P.O. Löwdin, Phys. Rev. 97, 1474 (1955)

    ADS  MathSciNet  Google Scholar 

  18. D.A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)

    ADS  Google Scholar 

  19. M. Piris, J.M. Matxain, X. Lopez, J. Chem. Phys. 139, 234109 (2013)

    ADS  Google Scholar 

  20. D.M. Ceperly, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    ADS  Google Scholar 

  21. G. Ortiz, P. Ballone, Phys. Rev. B 50, 1391 (1994)

    ADS  Google Scholar 

  22. G. Ortiz, P. Ballone, Erratum Phys. Rev. B 56, 9970 (1997)

    ADS  Google Scholar 

  23. N.N. Lathiotakis, N. Helbig, E.K.U. Gross, Phys. Rev. B 75 195120 (2007)

    ADS  Google Scholar 

  24. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    ADS  MathSciNet  Google Scholar 

  25. A.J. Leggett, Phys. Rev. Lett. 29, 1227 (1972)

    ADS  Google Scholar 

  26. K. Pernal, J. Cioslowski, J. Chem. Phys. 120, 5987 (2004)

    ADS  Google Scholar 

  27. P.W. Ayers, S. Liu, Phys. Rev. A 75, 022514 (2007)

    ADS  Google Scholar 

  28. P.W. Ayers, E.R. Davidson, Adv. Chem. Phys. 134, 443 (2007)

    Google Scholar 

  29. B. Lukman, J. Koller, B. Borstnik, A. Azman, Mol. Phys. 18, 857 (1970)

    ADS  Google Scholar 

  30. W.B. England, J. Phys. Chem. 86, 1204 (1982)

    Google Scholar 

  31. W.B. England, Int. J. Quantum Chem. 23, 905 (1983)

    Google Scholar 

  32. M. Piris, R. Cruz, Int. J. Quantum Chem. 53, 353 (1995)

    Google Scholar 

  33. M. Piris, L.A. Montero, N. Cruz, J. Chem. Phys. 107, 180 (1997)

    ADS  Google Scholar 

  34. V.N. Staroverov, G.E. Scuseria, J. Chem. Phys. 117, 2489 (2002)

    ADS  Google Scholar 

  35. V.N. Staroverov, G.E. Scuseria, J. Chem. Phys. 117, 11107 (2002)

    ADS  Google Scholar 

  36. G. Csanyi, T.A. Arias, Phys. Rev. B 61 7348 (2000)

    ADS  Google Scholar 

  37. M. Piris, P. Otto, J. Chem. Phys. 112, 8187 (2000)

    ADS  Google Scholar 

  38. J.M. Blatt, Prog. Theor. Phys. 23, 447 (1960)

    ADS  Google Scholar 

  39. A.J. Coleman, J. Math. Phys. 6, 1425 (1965)

    ADS  Google Scholar 

  40. S. Bratoz, P.h. Durand, J. Chem. Phys. 43, 2670 (1965)

    ADS  MathSciNet  Google Scholar 

  41. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)

    ADS  MathSciNet  Google Scholar 

  42. F. Bloch, Z. Phys. 57, 545 (1929)

    ADS  Google Scholar 

  43. F.H. Zong, C. Lin, D.M. Ceperley, Phys. Rev. E 66, 036703 (2002)

    ADS  Google Scholar 

  44. D. Ceperley, Phys. Rev. B 18, 3126 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Car.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebauer, R., Cohen, M.H. & Car, R. Occupation probabilities as variables in electronic structure theory: cooper pairing, OP-NSOFT-Cs,t, and the homogeneous electron liquid. Eur. Phys. J. B 91, 244 (2018). https://doi.org/10.1140/epjb/e2018-90242-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90242-2

Navigation