Advertisement

Density matrix spectra and order parameters in the 1D extended Hubbard model

  • Wing Chi Yu
  • Shi-Jian Gu
  • Hai-Qing Lin
Regular Article

Abstract

Without any knowledge of the symmetry existing in a system, we derive the exact forms of the order parameters which show long-range correlations in the ground state of the one-dimensional (1D) extended Hubbard model using a quantum information approach. Our work demonstrates that the quantum information approach can help us to find the explicit form of the order parameter, which could not be derived systematically via traditional methods in the condensed matter theory.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    G.D. Mahan, Many Particle Physics (Kluwer Academic/Plenum Publishers, New York, 2000)Google Scholar
  2. 2.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000)Google Scholar
  3. 3.
    S. Furukawa, G. Misguich, M. Oshikawa, Phys. Rev. Lett. 96, 047211 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    C.L. Henley, H.J. Changlani, J. Stat. Mech. 2014, P11002 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.-A. Cheong, C.L. Henley, Phys. Rev. B 79, 212402 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Gu, W.C. Yu, H.Q. Lin, Ann. Phys. 336, 118 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G.W. Hayden, Z.G. Soos, Phys. Rev. B 38, 6075 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    D.K. Campbell, T.A. DeGrand, S. Mazumdar, Phys. Rev. Lett. 52, 1717 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Phys. Rev. Lett. 100, 070502 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S.J. Gu, C.P. Sun, H.Q. Lin, J. Phys. A 41, 025002 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    V.J. Emery, in Highly Conducting One Dimensional Solids, edited by J.T. Devreese et al. (Plenum, New York, 1979), pp. 247–303Google Scholar
  13. 13.
    J. Solyom, Adv. Phys. 28, 201 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    V.J. Emery, Phys. Rev. B 14, 2989 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    M. Fowler, Phys. Rev. B 17, 2989 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    G.S. Tian, Phys. Rev. B 45, 3145 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    H.Q. Lin, E.R. Gagliano, D.K. Campbell, E.H. Fradkin, J.E. Gubernatis, in The Hubbard Model: Its Physics and Mathematical Physics, edited by D. Baeriswyl et al. (Plenum, New York, 1995), pp. 315–327Google Scholar
  18. 18.
    H.Q. Lin, D.K. Campbell, R.T. Clay, Chin. J. Phys. 38, 1 (2000)MathSciNetGoogle Scholar
  19. 19.
    J.E. Hirsch, Phys. Rev. Lett. 53, 2327 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Phys. Rev. Lett. 93, 086402 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Deng, S.J. Gu, H.Q. Lin, Phys. Rev. B 74, 045103 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M. Nakamura, J. Phys. Soc. Jpn 68, 3123 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M. Nakamura, Phys. Rev. B 61, 16377 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    E. Jeckelmann, Phys. Rev. Lett. 91, 089702 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B 65, 155113 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A.W. Sandvik, L. Balents, D.K. Campbell, Phys. Rev. Lett. 92, 236401 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Y.Z. Zhang, Phys. Rev. Lett. 92, 246404 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S. Ejima, S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M. Tsuchiizu, A. Furusaki, Phys. Rev. B 69, 035103 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    C. Mund, O. Legeza, R.M. Noack, Phys. Rev. B 79, 245130 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    G.-H. Liu, C.-H. Wang, Commun. Theor. Phys. 55, 702 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Y.C. Li, Z.G. Yuan, Phys. Lett. A 380, 272 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  36. 36.
    M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)ADSCrossRefGoogle Scholar
  37. 37.
    J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    P.D. Sacramento, Y.C. Li, S.J. Gu, J.M.P. Carmelo, Eur. Phys. J. B 86, 507 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    G. Misguich, C. Lhuillier, in Frustrated spin systems, edited by H.T. Diep (World-Scientific, Singapore, 2005)Google Scholar
  40. 40.
    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    S.J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and ITPThe Chinese University of Hong KongHong KongP.R. China
  2. 2.Beijing Computational Science Research CenterBeijingP.R. China

Personalised recommendations