A many-electron perturbation theory study of the hexagonal boron nitride bilayer system*

Open Access
Regular Article
Part of the following topical collections:
  1. Topical issue: Ψk Volker Heine Young Investigator Award – 2015 Finalists

Abstract

In this article we explore methods to reduce the computational cost in many-electron wave function expansions including explicit correlation and compact one-electron basis sets for the virtual orbitals. These methods are applied to the calculation of the interlayer binding energy of the h-BN bilayer system. We summarize the optimized interlayer distances as well as their binding energies for various stacking faults on different levels of theory including second-order Møller-Plesset perturbation theory and the random phase approximation. Furthermore, we investigate the asymptotic behavior of the binding energy at large interlayer separation and find that it decays as D -4 in agreement with theoretical predictions, where D is the interlayer distance.

References

  1. 1.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012)CrossRefGoogle Scholar
  3. 3.
    R.J. Bartlett, M. Musiał, Rev. Mod. Phys. 79, 291 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    G.K.L. Chan, D. Zgid, Ann. Rep. Comput. Chem. 5, 149 (2009)CrossRefGoogle Scholar
  5. 5.
    G.K.L. Chan, S. Sharma, Ann. Rev. Phys. Chem. 62, 465 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    G.H. Booth, A. Grüneis, G. Kresse, A. Alavi, Nature 493, 365 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Y.S. Al-Hamdani, M. Ma, D. Alfè, O.A. Von Lilienfeld, A. Michaelides, J. Chem. Phys. 142, 181101 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Wu, L.K. Wagner, N.R. Aluru, J. Chem. Phys. 142, 234702 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Lebègue, J. Harl, T. Gould, J.G. Ángyán, G. Kresse, J.F. Dobson, Phys. Rev. Lett. 105, 1 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Liu, Y.P. Feng, Z.X. Shen, Phys. Rev. B 68, 104102 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    N. Ooi, A. Rairkar, L. Lindsley, J.B. Adams, J. Phys.: Condens. Matter 18, 97 (2006)ADSGoogle Scholar
  12. 12.
    N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 105, 46801 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Yin, M.L. Hu, Z. Yu, C.X. Zhang, L.Z. Sun, J.X. Zhong, Physica B 406, 2293 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W. Gao, A. Tkatchenko, Phys. Rev. Lett. 114, 1 (2015)Google Scholar
  15. 15.
    G. Constantinescu, A. Kuc, T. Heine, Phys. Rev. Lett. 111, 1 (2013)CrossRefGoogle Scholar
  16. 16.
    C.R. Hsing, C. Cheng, J.P. Chou, C.M. Chang, C.M. Wei, New J. Phys. 16, 113015 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    I. Leven, I. Azuri, L. Kronik, O. Hod, J. Chem. Phys. 140, 104106 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A.V. Lebedev, I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, RSC Adv. 6, 6423 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Marini, P. García-González, A. Rubio, Phys. Rev. Lett. 96, 2 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Gulans, A.V. Krasheninnikov, R.M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Marsman, A. Grüneis, J. Paier, G. Kresse, J. Chem. Phys. 130, 184103 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Grüneis, M. Marsman, G. Kresse, J. Chem. Phys. 133, 74107 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Grüneis, G.H. Booth, M. Marsman, J. Spencer, A. Alavi, G. Kresse, J. Chem. Theory Comput. 7, 2780 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Grüneis, Phys. Rev. Lett. 115, 66402 (2015)CrossRefGoogle Scholar
  25. 25.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994)ADSGoogle Scholar
  27. 27.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    G.H. Booth, T. Tsatsoulis, G. Kin-Lic Chan, A. Grüneis, arXiv:1603.06457 (2016)
  29. 29.
    A. Grüneis, J.J. Shepherd, A. Alavi, D.P. Tew, G.H. Booth, J. Chem. Phys. 139, 084112 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    C. Hättig, W. Klopper, A. Köhn, D.P. Tew, Chem. Rev. 112, 4 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Ten-no, Theoret. Chem. Acc. 131, 1 (2012)Google Scholar
  32. 32.
    W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, T. Taniguchi, Appl. Phys. Lett. 93, 223103 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Warner, M.H. Rümmeli, A. Bachmatiuk, B. Büchner, ACS Nano 4, 1299 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 73005 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J. Klimeš, D.R. Bowler, A. Michaelides, J. Phys.: Condens. Matter 22, 22201 (2010)Google Scholar
  36. 36.
    J. Harl, L. Schimka, G. Kresse, Phys. Rev. B 81, 115126 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    J. Paier, X. Ren, P. Rinke, G.E. Scuseria, A. Grüneis, G. Kresse, M. Scheffler, New J. Phys. 14, 043002 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J.F. Dobson, A. White, A. Rubio, Phys. Rev. Lett. 96, 4 (2006)CrossRefGoogle Scholar
  39. 39.
    A. Ambrosetti, N. Ferri, A. Tkatchenko, Science 351, 1171 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    G. Constantinescu, A. Kuc, T. Heine, Phys. Rev. Lett. 111, 1 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations