Advertisement

Defective graphene and nanoribbons: electronic, magnetic and structural properties

  • Thiago Guerra
  • Sérgio Azevedo
  • Marcelo Machado
Regular Article

Abstract

We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

Keywords

Solid State and Materials 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    X. Ma, H. Zhang, Nanoscale Res. Lett. 8, 440 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    L.M. Viculis, J.J. Mack, R.B. Kaner, Science 299, 1361 (2003)CrossRefGoogle Scholar
  8. 8.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Carbon 45, 2017 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Muñoz-Rojas, J. Fernández-Rossier, J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer, Nature 506, 349 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Nat. Nanotech. 3, 397 (2008)CrossRefGoogle Scholar
  17. 17.
    G.Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P. Nemes-Incze, C. Hwang, L.P. Biró, L. Tapasztó, Nature 514, 608 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 466, 470 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T.H. Vo, M. Shekhirev, D.A. Kunkel, M.D. Morton, E. Berglund, L. Kong, P.M. Wilson, P.A. Dowben, A. Enders, A. Sinitskii, Nat. Commun. 5, 1 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nat. Nanotechnol. 5, 321 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, H.-M. Cheng, ACS Nano 7, 4233 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, J. Zeng, H.-L. Zhang, Y. Peng, Nanotechnol. 21, 065201 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    H. Hiura, Appl. Surf. Sci. 222, 374 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, Z.G. Liu, Appl. Phys. Lett. 96, 163102 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D. Ghosh, P. Parida, S.K. Pati, J. Mater. Chem. C 2, 392 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Pelc, L. Chico, A. Ayuela, W. Jaskólski, Phys. Rev. B 87, 165427 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Q.Q. Dai, Y.F. Zhu, Q. Jiang, J. Phys. Chem. C 117, 4791 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, Nat. Nanotechnol. 5, 326 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J.-H. Chen, G. Autís, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O.V. Yazyev, S.G. Louie, A. Zettl, Phys. Rev. B 89, 121407(R) (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Li, R.-Q. Zhang, Z. Lin, M.A.V. Hove, Nanoscale 4, 2580 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Nano Lett. 13, 2615 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A.R. Botello-Méndez, X. Declerck, M. Terrones, H. Terronesa, J.-C. Charliera, Nanoscale 3, 2868 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M.M. Ugeda, I. Brihuega, F. Hiebel, P. Mallet, J.-Y. Veuillen, J.M.G. Rodríguez, F. Ynduráin, Phys. Rev. B 85, 121402(R) (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Liu, X. Zou, B.I. Yakobson, ACS Nano 6, 7053 (2012)CrossRefGoogle Scholar
  35. 35.
    D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 435 (1997)CrossRefGoogle Scholar
  36. 36.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)ADSGoogle Scholar
  37. 37.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    W. Kohn, L. Sham, Phys. Rev. Lett. 140, A1133 (1965)ADSMathSciNetGoogle Scholar
  39. 39.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    L. Kleinman, M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  42. 42.
    S.S. Alexandre, H. Chacham, R.W. Nunes, Phys. Rev. B 63, 045402 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    S. Azevedo, M.S. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, Phys. Rev. Lett. 106, 105505 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    L. Feng, X. Lin, L. Meng, J.-C. Nie, J. Ni, L. He, Appl. Phys. Lett. 101, 113113 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thiago Guerra
    • 1
  • Sérgio Azevedo
    • 1
  • Marcelo Machado
    • 2
  1. 1.Departamento de Física/CCEN, Universidade Federal da Paraíba Caixa Postal 5008João Pessoa-PBBrazil
  2. 2.Departamento de Física, Universidade Federal de Pelotas Caixa Postal 354Pelotas-RSBrazil

Personalised recommendations