Skip to main content
Log in

Defective graphene and nanoribbons: electronic, magnetic and structural properties

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  3. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  4. X. Ma, H. Zhang, Nanoscale Res. Lett. 8, 440 (2013)

    Article  ADS  Google Scholar 

  5. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  6. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  7. L.M. Viculis, J.J. Mack, R.B. Kaner, Science 299, 1361 (2003)

    Article  Google Scholar 

  8. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  ADS  Google Scholar 

  9. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Carbon 45, 2017 (2007)

    Article  Google Scholar 

  10. L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007)

    Article  ADS  Google Scholar 

  11. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2007)

    Article  ADS  Google Scholar 

  12. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  13. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)

    Article  Google Scholar 

  14. F. Muñoz-Rojas, J. Fernández-Rossier, J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009)

    Article  ADS  Google Scholar 

  15. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer, Nature 506, 349 (2014)

    Article  ADS  Google Scholar 

  16. L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Nat. Nanotech. 3, 397 (2008)

    Article  Google Scholar 

  17. G.Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P. Nemes-Incze, C. Hwang, L.P. Biró, L. Tapasztó, Nature 514, 608 (2014)

    Article  ADS  Google Scholar 

  18. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  19. T.H. Vo, M. Shekhirev, D.A. Kunkel, M.D. Morton, E. Berglund, L. Kong, P.M. Wilson, P.A. Dowben, A. Enders, A. Sinitskii, Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  20. L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nat. Nanotechnol. 5, 321 (2010)

    Article  ADS  Google Scholar 

  21. J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, H.-M. Cheng, ACS Nano 7, 4233 (2013)

    Article  Google Scholar 

  22. Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, J. Zeng, H.-L. Zhang, Y. Peng, Nanotechnol. 21, 065201 (2010)

    Article  ADS  Google Scholar 

  23. H. Hiura, Appl. Surf. Sci. 222, 374 (2004)

    Article  ADS  Google Scholar 

  24. B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, Z.G. Liu, Appl. Phys. Lett. 96, 163102 (2010)

    Article  ADS  Google Scholar 

  25. D. Ghosh, P. Parida, S.K. Pati, J. Mater. Chem. C 2, 392 (2014)

    Article  Google Scholar 

  26. M. Pelc, L. Chico, A. Ayuela, W. Jaskólski, Phys. Rev. B 87, 165427 (2013)

    Article  ADS  Google Scholar 

  27. Q.Q. Dai, Y.F. Zhu, Q. Jiang, J. Phys. Chem. C 117, 4791 (2013)

    Article  Google Scholar 

  28. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, Nat. Nanotechnol. 5, 326 (2010)

    Article  ADS  Google Scholar 

  29. J.-H. Chen, G. Autís, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O.V. Yazyev, S.G. Louie, A. Zettl, Phys. Rev. B 89, 121407(R) (2014)

    Article  ADS  Google Scholar 

  30. Y. Li, R.-Q. Zhang, Z. Lin, M.A.V. Hove, Nanoscale 4, 2580 (2012)

    Article  ADS  Google Scholar 

  31. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Nano Lett. 13, 2615 (2013)

    Article  ADS  Google Scholar 

  32. A.R. Botello-Méndez, X. Declerck, M. Terrones, H. Terronesa, J.-C. Charliera, Nanoscale 3, 2868 (2011)

    Article  ADS  Google Scholar 

  33. M.M. Ugeda, I. Brihuega, F. Hiebel, P. Mallet, J.-Y. Veuillen, J.M.G. Rodríguez, F. Ynduráin, Phys. Rev. B 85, 121402(R) (2012)

    Article  ADS  Google Scholar 

  34. Y. Liu, X. Zou, B.I. Yakobson, ACS Nano 6, 7053 (2012)

    Article  Google Scholar 

  35. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 435 (1997)

    Article  Google Scholar 

  36. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  37. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  38. W. Kohn, L. Sham, Phys. Rev. Lett. 140, A1133 (1965)

    ADS  MathSciNet  Google Scholar 

  39. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  40. N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  41. L. Kleinman, M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  42. S.S. Alexandre, H. Chacham, R.W. Nunes, Phys. Rev. B 63, 045402 (2001)

    Article  ADS  Google Scholar 

  43. S. Azevedo, M.S. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)

    Article  ADS  Google Scholar 

  44. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, Phys. Rev. Lett. 106, 105505 (2011)

    Article  ADS  Google Scholar 

  45. L. Feng, X. Lin, L. Meng, J.-C. Nie, J. Ni, L. He, Appl. Phys. Lett. 101, 113113 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, T., Azevedo, S. & Machado, M. Defective graphene and nanoribbons: electronic, magnetic and structural properties. Eur. Phys. J. B 89, 58 (2016). https://doi.org/10.1140/epjb/e2016-60932-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60932-x

Keywords

Navigation