Skip to main content
Log in

Thermoelectric effect in the Kondo dot side-coupled to a Majorana mode

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the linear thermoelectric response of an interacting quantum dot side-coupled by one of two Majorana modes hosted by a topological superconducting wire. We employ the numerical renormalization group technique to obtain the thermoelectrical conductance L in the Kondo regime while the background temperature T, the Majorana-dot coupling Γ m , and the overlap ε m between the two Majorana modes are tuned. We distinguish two transport regimes in which L displays different features: the weak- (Γ m <T K ) and strong-coupling (Γ m >T K ) regimes, where T K is the Kondo temperature. For an infinitely long nanowire where the Majorana modes do not overlap (ε m = 0), the thermoelectrical conductance in the weak-coupling regime exhibits a peak at T ~ Γ m <T K . This peak is ascribed to the anti-Fano resonance between the asymmetric Kondo resonance and the zero-energy Majorana bound state. In the strong-coupling regime, on the other hand, the Kondo-induced peak in L is affected by the induced Zeeman splitting in the dot. For finite but small overlap (0 <ε m <Γ m ), the interference between the two Majorana modes restores the Kondo effect in a smaller energy scale Γ′ m and gives rise to an additional peak in Γ ~ Γ′ m, whose sign is opposite to that at T ~ Γ m . In the strong-coupling regime this additional peak can cause a non-monotonic behavior of L with respect to the dot gate. Finally, in order to identify the fingerprint of Majorana physics, we compare the Majorana case with its counterpart in which the Majorana bound states are replaced by a (spin-polarized) ordinary bound state and find that the thermoelectric features for finite ε m are the genuine effect of the Majorana physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  MATH  ADS  Google Scholar 

  3. E. Majorana, Nuovo Cim. 14, 171 (1937)

    Article  Google Scholar 

  4. A.Y. Kitaev, Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  5. F. Wilczek, Nat. Phys. 5, 614 (2009)

    Article  Google Scholar 

  6. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  7. C.W.J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  8. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  10. S. Das Sarma, C. Nayak, S. Tewari, Phys. Rev. B 73, 220502 (2006)

    Article  ADS  Google Scholar 

  11. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  12. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø, N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010)

    Article  ADS  Google Scholar 

  13. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  14. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  15. J. Alicea, Phys. Rev. B 81, 125318 (2010)

    Article  ADS  Google Scholar 

  16. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  17. J. Linder, A. Sudbø, Phys. Rev. B 82, 085314 (2010)

    Article  ADS  Google Scholar 

  18. A.C. Potter, P.A. Lee, Phys. Rev. B 83, 184520 (2011)

    Article  ADS  Google Scholar 

  19. J. Liu, A.C. Potter, K.T. Law, P.A. Lee, Phys. Rev. Lett. 109, 267002 (2012)

    Article  ADS  Google Scholar 

  20. F. Pientka, G. Kells, A. Romito, P.W. Brouwer, F. von Oppen, Phys. Rev. Lett. 109, 227006 (2012)

    Article  ADS  Google Scholar 

  21. E. Prada, P. San-Jose, R. Aguado, Phys. Rev. B 86, 180503(R) (2012)

    Article  ADS  Google Scholar 

  22. J.S. Lim, R. López, L. Serra, New J. Phys. 14, 083020 (2012)

    Article  ADS  Google Scholar 

  23. M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Cardoff, H.Q. Xu, Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  24. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heinblum, H. Shtrikman, Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  25. H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T. Deng, P. Caroff, H.Q. Xu, C.M. Marcus, Phys. Rev. B 87, 241401 (2013)

    Article  ADS  Google Scholar 

  26. A.D.K. Finck, D.J. van Harlingen, P.K. Mohseni, K. Jung, X. Li, Phys. Rev. Lett. 110, 126406 (2013)

    Article  ADS  Google Scholar 

  27. F. Pientka, L.I. Glazman, F. von Oppen, Phys. Rev. B 88, 155420 (2013)

    Article  ADS  Google Scholar 

  28. J. Klinovaja, P. Stano, A. Yazdani, D. Loss, Phys. Rev. Lett. 111, 186805 (2013)

    Article  ADS  Google Scholar 

  29. B. Braunecker, P. Simon, Phys. Rev. Lett. 111, 147202 (2013)

    Article  ADS  Google Scholar 

  30. S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346, 602 (2014)

    Article  ADS  Google Scholar 

  31. W. Chang, V.E. Manucharyan, T.S. Jespersen, J. Nygård, C.M. Marcus, Phys. Rev. Lett. 110, 217005 (2013)

    Article  ADS  Google Scholar 

  32. E.J.H. Lee, X. Jiang, R. Aguado, G. Katsaros, C.M. Lieber, S. De Franceschi, Phys. Rev. Lett. 109, 186802 (2012)

    Article  ADS  Google Scholar 

  33. R. Žitko, J.S. Lim, R. Lopez, R. Aguado, Phys. Rev. B 91, 045441 (2015)

    Article  ADS  Google Scholar 

  34. G. Kells, D. Meidan, P.W. Brouwer, Phys. Rev. B 86, 100503 (2012)

    Article  ADS  Google Scholar 

  35. E.J.H. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber, S. De Franceschi, Nat. Nanotechnol. 9, 79 (2014)

    Article  ADS  Google Scholar 

  36. D.I. Pikulin, J.P. Dahlhaus, M. Wimmer, H. Schomerus, C.W.J. Beenakker, New J. Phys. 14, 125011 (2012)

    Article  ADS  Google Scholar 

  37. M. Leijnse, New J. Phys. 16, 015029 (2014)

    Article  ADS  Google Scholar 

  38. R. López, M. Lee, L. Serra, J.S. Lim, Phys. Rev. B 89, 205418 (2014)

    Article  ADS  Google Scholar 

  39. S. Valentini, R. Fazio, V. Giovannetti, F. Taddei, Phys. Rev. B 91, 045430 (2015)

    Article  ADS  Google Scholar 

  40. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  41. Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  42. P.N. Butcher, J. Phys.: Condens. Matter 2, 4869 (1990)

    ADS  Google Scholar 

  43. L.W. Molenkamp, Th. Gravier, H. van Houten, O.J.A. Buijk, M.A.A. Mabesoone, C.T. Foxon, Phys. Rev. Lett. 68, 3765 (1992)

    Article  ADS  Google Scholar 

  44. A.S. Dzurak, C.G. Smith, C.H.W. Barnes, M. Pepper, L. Martín-Moreno, C.T. Liang, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 55, 10197(R) (1997)

    Article  ADS  Google Scholar 

  45. S.F. Godijn, S. Möller, H. Buhmann, L.W. Molenkamp, S.A. van Langen, Phys. Rev. Lett. 82, 2927 (1999)

    Article  ADS  Google Scholar 

  46. P. Coleman, J.B. Marston, A.J. Schofield, Phys. Rev. B 72, 245111 (2005)

    Article  ADS  Google Scholar 

  47. Ph. Jacquod, R. Whitney, Europhys. Lett. 91, 67009 (2010)

    Article  ADS  Google Scholar 

  48. V. Balachandran, R. Bosisio, G. Benenti, Phys. Rev. B 86, 035433 (2012)

    Article  ADS  Google Scholar 

  49. B. Kubala, J. König, J. Pekola, Phys. Rev. Lett. 100, 066801 (2008)

    Article  ADS  Google Scholar 

  50. Y.-L. Lee, J. Phys.: Condens. Matter 26, 455702 (2014)

    ADS  Google Scholar 

  51. A. Golub, Phys. Rev. B 91, 205105 (2015)

    Article  ADS  Google Scholar 

  52. Y. Cao, P. Wang, G. Xiong, M. Gong, X. Li, Phys. Rev. B 86, 115311 (2012)

    Article  ADS  Google Scholar 

  53. D.E. Liu, M. Cheng, R.M. Lutchyn, Phys. Rev. B 91, 081405 (2015)

    Article  ADS  Google Scholar 

  54. M. Lee, J.S. Lim, R. López, Phys. Rev. B 87, 241402 (2013)

    Article  ADS  Google Scholar 

  55. E. Eriksson, C. Mora, A. Zazunov, R. Egger, Phys. Rev. Lett. 113, 076404 (2014)

    Article  ADS  Google Scholar 

  56. M. Cheng, M. Becker, B. Bauer, R.M. Lutchyn, Phys. Rev. X 4, 031051 (2014)

    Google Scholar 

  57. R. Chirla, I.V. Dinu, V. Moldoveanu, C.P. Moca, Phys. Rev. B 90, 195108 (2014)

    Article  ADS  Google Scholar 

  58. M. Leijnse, K. Flensberg, Phys. Rev. Lett. 107, 210502 (2011)

    Article  ADS  Google Scholar 

  59. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  60. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  61. K. Flensberg, Phys. Rev. B 82, 180516 (2010)

    Article  ADS  Google Scholar 

  62. D. Sticlet, C. Bena, P. Simon, Phys. Rev. Lett. 108, 096802 (2012)

    Article  ADS  Google Scholar 

  63. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  64. H.R. Krishna-Murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1003 (1980)

    Article  ADS  Google Scholar 

  65. H.R. Krishna-Murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1044 (1980)

    Article  ADS  Google Scholar 

  66. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  67. W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000)

    Article  ADS  Google Scholar 

  68. V.L. Campo, L.N. Oliveira, Phys. Rev. B 72, 104432 (2005)

    Article  ADS  Google Scholar 

  69. R. Žitko, T. Pruschke, Phys. Rev. B 79, 085106 (2009)

    Article  ADS  Google Scholar 

  70. R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

    Article  ADS  Google Scholar 

  71. D.E. Liu, H.U. Baranger, Phys. Rev. B 84, 201308 (2011)

    Article  ADS  Google Scholar 

  72. T.A. Costi, V. Zlatić, Phys. Rev. B 81, 235127 (2010)

    Article  ADS  Google Scholar 

  73. R. Schelbner, H. Buhmann, D. Reuter, M.N. Kiselev, L.W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005)

    Article  ADS  Google Scholar 

  74. A.C. Hewson, The Kondo Problem to Heavy-Fermions (Cambridge University Press, Cambridge, 1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minchul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khim, H., López, R., Lim, J.S. et al. Thermoelectric effect in the Kondo dot side-coupled to a Majorana mode. Eur. Phys. J. B 88, 151 (2015). https://doi.org/10.1140/epjb/e2015-60200-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60200-9

Keywords

Navigation