Advertisement

Strong-coupling limit of depleted Kondo- and Anderson-lattice models

  • Irakli Titvinidze
  • Andrej Schwabe
  • Michael Potthoff
Regular Article

Abstract

Fourth-order strong-coupling degenerate perturbation theory is used to derive an effective low-energy Hamiltonian for the Kondo-lattice model with a depleted system of localized spins. In the strong-J limit, completely local Kondo singlets are formed at the spinful sites which bind a fraction of conduction electrons. The low-energy theory describes the scattering of the excess conduction electrons at the Kondo singlets as well as their effective interactions generated by virtual excitations of the singlets. Besides the Hubbard term, already discussed by Nozières, we find a ferromagnetic Heisenberg interaction, an antiferromagnetic isospin interaction, a correlated hopping and, in more than one dimensions, three- and four-site interactions. The interaction term can be cast into highly symmetric and formally simple spin-only form using the spin of the bonding orbital symmetrically centered around the Kondo singlet. This spin is non-local. We show that, depending on the geometry of the depleted lattice, spatial overlap of the non-local spins around different Kondo singlets may cause ferromagnetic order. This is sustained by a rigorous argument, applicable to the half-filled model, by a variational analysis of the stability of the fully polarized Fermi sea of excess conduction electrons as well as by exact diagonalization of the effective model. A similar fourth-order perturbative analysis is performed for the depleted Anderson lattice in the limit of strong hybridization. Even in a parameter regime where the Schrieffer-Wolff transformation does not apply, this yields the same effective theory albeit with a different coupling constant.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Doniach, Physica B 91, 321 (1977)CrossRefGoogle Scholar
  2. 2.
    C. Lacroix, M. Cyrot, Phys. Rev. B 20, 1969 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    H. Tsunetsugu, M. Sigrist, K. Ueda, Rev. Mod. Phys. 69, 809 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Kuramoto, Y. Kitaoka, Dynamics of Heavy Electrons (Oxford University Press, New York, 2000)Google Scholar
  5. 5.
    P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials (Wiley, 2007), Vol. 1, p. 95Google Scholar
  6. 6.
    M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)ADSCrossRefMATHGoogle Scholar
  8. 8.
    K. Yosida, Phys. Rev. 106, 893 (1957) ADSCrossRefGoogle Scholar
  9. 9.
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)Google Scholar
  11. 11.
    M. Troyer, D. Würtz, Phys. Rev. B 47, 2886 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    I.P. McCulloch, A. Juozapavicius, A. Rosengren, M. Gulácsi, Phys. Rev. B 65, 052410 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    M. Gulácsi, Adv. Phys. 53, 769 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    R. Peters, N. Kawakami, Phys. Rev. B 86, 165107 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    J. Otsuki, H. Kusunose, Y. Kuramoto, J. Phys. Soc. Jpn 78, 034719 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    R. Peters, N. Kawakami, T. Pruschke, Phys. Rev. Lett. 108, 086402 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    C. Lacroix, Solid State Commun. 54, 991 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Nagaoka, Phys. Rev. 147, 392 (1966) ADSCrossRefGoogle Scholar
  19. 19.
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schwabe, I. Titvinidze, M. Potthoff, Phys. Rev. B 88, 121107(R) (2013) ADSCrossRefGoogle Scholar
  21. 21.
    F.F. Assaad, Phys. Rev. B 65, 115104 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    P. Nozières, J. Low Temp. Phys. 17, 31 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    P. Nozières, J. Phys. C 37, C1-271 (1976) Google Scholar
  24. 24.
    P. Nozières, A. Blandin, J. Phys. 41, 193 (1980)CrossRefGoogle Scholar
  25. 25.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    U. Schollwöck, Ann. Phys. 326, 96 (2011)ADSCrossRefMATHGoogle Scholar
  27. 27.
    J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966) ADSCrossRefGoogle Scholar
  28. 28.
    P. Sinjukow, W. Nolting, Phys. Rev. B 65, 212303 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    M. Sigrist, H. Tsunetsugu, K. Ueda, T.M. Rice, Phys. Rev. B 46, 13838 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    I. Titvinidze, A. Schwabe, M. Potthoff, Phys. Rev. B 90, 045112 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    A. Schwabe, M. Hänsel, M. Potthoff, Phys. Rev. A 90, 033615 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    R. Peters, Y. Tada, N. Kawakami, Phys. Rev. B 88, 155134 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    L. Zhou, J. Wiebe, S. Lounis, E. Vedmedenko, F. Meier, S. Blügel, P. Dederichs, R. Wiesendanger, Nat. Phys. 6, 187 (2010)CrossRefGoogle Scholar
  34. 34.
    A.A. Khajetoorians, J. Wiebe, B. Chilian, R. Wiesendanger, Science 332, 1062 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel, R. Wiesendanger, Nat. Phys. 8, 497 (2012)CrossRefGoogle Scholar
  36. 36.
    R.K. Kaul, M. Vojta, Phys. Rev. B 75, 132407 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    S. Burdin, C. Lacroix, Phys. Rev. Lett. 110, 226403 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper, V. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)Google Scholar
  39. 39.
    E. Lange, Mod. Phys. Lett. B 12, 915 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    I. Titvinidze, A. Schwabe, N. Rother, M. Potthoff, Phys. Rev. B 86, 075141 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Irakli Titvinidze
    • 1
  • Andrej Schwabe
    • 1
  • Michael Potthoff
    • 1
  1. 1.I. Institut für Theoretische Physik, Universität HamburgHamburgGermany

Personalised recommendations