Skip to main content
Log in

Strong-coupling limit of depleted Kondo- and Anderson-lattice models

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Fourth-order strong-coupling degenerate perturbation theory is used to derive an effective low-energy Hamiltonian for the Kondo-lattice model with a depleted system of localized spins. In the strong-J limit, completely local Kondo singlets are formed at the spinful sites which bind a fraction of conduction electrons. The low-energy theory describes the scattering of the excess conduction electrons at the Kondo singlets as well as their effective interactions generated by virtual excitations of the singlets. Besides the Hubbard term, already discussed by Nozières, we find a ferromagnetic Heisenberg interaction, an antiferromagnetic isospin interaction, a correlated hopping and, in more than one dimensions, three- and four-site interactions. The interaction term can be cast into highly symmetric and formally simple spin-only form using the spin of the bonding orbital symmetrically centered around the Kondo singlet. This spin is non-local. We show that, depending on the geometry of the depleted lattice, spatial overlap of the non-local spins around different Kondo singlets may cause ferromagnetic order. This is sustained by a rigorous argument, applicable to the half-filled model, by a variational analysis of the stability of the fully polarized Fermi sea of excess conduction electrons as well as by exact diagonalization of the effective model. A similar fourth-order perturbative analysis is performed for the depleted Anderson lattice in the limit of strong hybridization. Even in a parameter regime where the Schrieffer-Wolff transformation does not apply, this yields the same effective theory albeit with a different coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Doniach, Physica B 91, 321 (1977)

    Article  Google Scholar 

  2. C. Lacroix, M. Cyrot, Phys. Rev. B 20, 1969 (1979)

    Article  ADS  Google Scholar 

  3. H. Tsunetsugu, M. Sigrist, K. Ueda, Rev. Mod. Phys. 69, 809 (1997)

    Article  ADS  Google Scholar 

  4. Y. Kuramoto, Y. Kitaoka, Dynamics of Heavy Electrons (Oxford University Press, New York, 2000)

  5. P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials (Wiley, 2007), Vol. 1, p. 95

  6. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  7. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  MATH  Google Scholar 

  8. K. Yosida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  9. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  10. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  11. M. Troyer, D. Würtz, Phys. Rev. B 47, 2886 (1993)

    Article  ADS  Google Scholar 

  12. I.P. McCulloch, A. Juozapavicius, A. Rosengren, M. Gulácsi, Phys. Rev. B 65, 052410 (2002)

    Article  ADS  Google Scholar 

  13. M. Gulácsi, Adv. Phys. 53, 769 (2004)

    Article  ADS  Google Scholar 

  14. R. Peters, N. Kawakami, Phys. Rev. B 86, 165107 (2012)

    Article  ADS  Google Scholar 

  15. J. Otsuki, H. Kusunose, Y. Kuramoto, J. Phys. Soc. Jpn 78, 034719 (2009)

    Article  ADS  Google Scholar 

  16. R. Peters, N. Kawakami, T. Pruschke, Phys. Rev. Lett. 108, 086402 (2012)

    Article  ADS  Google Scholar 

  17. C. Lacroix, Solid State Commun. 54, 991 (1985)

    Article  ADS  Google Scholar 

  18. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  19. J. Kondo, Prog. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  20. A. Schwabe, I. Titvinidze, M. Potthoff, Phys. Rev. B 88, 121107(R) (2013)

    Article  ADS  Google Scholar 

  21. F.F. Assaad, Phys. Rev. B 65, 115104 (2002)

    Article  ADS  Google Scholar 

  22. P. Nozières, J. Low Temp. Phys. 17, 31 (1974)

    Article  ADS  Google Scholar 

  23. P. Nozières, J. Phys. C 37, C1-271 (1976)

    Google Scholar 

  24. P. Nozières, A. Blandin, J. Phys. 41, 193 (1980)

    Article  Google Scholar 

  25. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  26. U. Schollwöck, Ann. Phys. 326, 96 (2011)

    Article  ADS  MATH  Google Scholar 

  27. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  28. P. Sinjukow, W. Nolting, Phys. Rev. B 65, 212303 (2002)

    Article  ADS  Google Scholar 

  29. M. Sigrist, H. Tsunetsugu, K. Ueda, T.M. Rice, Phys. Rev. B 46, 13838 (1992)

    Article  ADS  Google Scholar 

  30. I. Titvinidze, A. Schwabe, M. Potthoff, Phys. Rev. B 90, 045112 (2014)

    Article  ADS  Google Scholar 

  31. A. Schwabe, M. Hänsel, M. Potthoff, Phys. Rev. A 90, 033615 (2014)

    Article  ADS  Google Scholar 

  32. R. Peters, Y. Tada, N. Kawakami, Phys. Rev. B 88, 155134 (2013)

    Article  ADS  Google Scholar 

  33. L. Zhou, J. Wiebe, S. Lounis, E. Vedmedenko, F. Meier, S. Blügel, P. Dederichs, R. Wiesendanger, Nat. Phys. 6, 187 (2010)

    Article  Google Scholar 

  34. A.A. Khajetoorians, J. Wiebe, B. Chilian, R. Wiesendanger, Science 332, 1062 (2011)

    Article  ADS  Google Scholar 

  35. A.A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel, R. Wiesendanger, Nat. Phys. 8, 497 (2012)

    Article  Google Scholar 

  36. R.K. Kaul, M. Vojta, Phys. Rev. B 75, 132407 (2007)

    Article  ADS  Google Scholar 

  37. S. Burdin, C. Lacroix, Phys. Rev. Lett. 110, 226403 (2013)

    Article  ADS  Google Scholar 

  38. F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper, V. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)

  39. E. Lange, Mod. Phys. Lett. B 12, 915 (1998)

    Article  ADS  Google Scholar 

  40. I. Titvinidze, A. Schwabe, N. Rother, M. Potthoff, Phys. Rev. B 86, 075141 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Potthoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titvinidze, I., Schwabe, A. & Potthoff, M. Strong-coupling limit of depleted Kondo- and Anderson-lattice models. Eur. Phys. J. B 88, 9 (2015). https://doi.org/10.1140/epjb/e2014-50772-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50772-1

Keywords

Navigation