Intrinsic superstatistical components of financial time series

  • Călin Vamoş
  • Maria Crăciun
Regular Article


Time series generated by a complex hierarchical system exhibit various types of dynamics at different time scales. A financial time series is an example of such a multiscale structure with time scales ranging from minutes to several years. In this paper we decompose the volatility of financial indices into five intrinsic components and we show that it has a heterogeneous scale structure. The small-scale components have a stochastic nature and they are independent 99% of the time, becoming synchronized during financial crashes and enhancing the heavy tails of the volatility distribution. The deterministic behavior of the large-scale components is related to the nonstationarity of the financial markets evolution. Our decomposition of the financial volatility is a superstatistical model more complex than those usually limited to a superposition of two independent statistics at well-separated time scales.


Computational Methods 


  1. 1.
    L.F. Costa, O.N. Oliveira, G. Travieso, F.A. Rodrigues, P.R.V. Boas, L. Antiqueira, M.P. Viana, L.E.C. da Rocha, Adv. Phys. 60, 329 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Barabási, E. Ravasz, Z. Oltvai, in Statistical Mechanics of Complex Networks, edited by R. Pastoras-Satorras, M. Rubi, A. Diaz-Guilera (Springer, Berlin, 2003)Google Scholar
  3. 3.
    M.M. Dacorogna, R. Gençay, U.A. Müller, R.B. Olsen, O.V. Pictet, An Introduction to High-Frequency Finance (Academic Press, San Diego, 2001)Google Scholar
  4. 4.
    R.S. Tsay, Analysis of Financial Time Series (Wiley, Hoboken, 2010)Google Scholar
  5. 5.
    C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    C. Beck, Philos. Trans. R. Soc. A 369, 453 (2011) ADSCrossRefMATHGoogle Scholar
  7. 7.
    D.N. Sob’yanin, Phys. Rev. E 84, 051128 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    C. Beck, Braz. J. Phys. 39, 357 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C. Beck, Phys. Rev. Lett. 98, 064502 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    J. Gao, Y. Cao, W. Tung, J. Hu, Multiscale Analysis of Complex Time Series (Wiley, Hoboken, 2007)Google Scholar
  11. 11.
    D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000) Google Scholar
  12. 12.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proc. R. Soc. London A 454, 903 (1998) ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    R. Cont, Quant. Financ. 1, 223 (2001)CrossRefGoogle Scholar
  14. 14.
    S.J. Taylor, Asset Price Dynamics, Volatility, and Prediction (Princeton University Press, Princeton, 2007) Google Scholar
  15. 15.
    E. Van der Straeten, C. Beck, Phys. Rev. E 80, 036108 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    A. Gerig, J. Vicente, M.A. Fuentes, Phys. Rev. E 80, 065102 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    C. Vamoş, M. Crăciun, Phys. Rev. E 81, 051125 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    C. Vamoş, M. Crăciun, Eur. Phys. J. B 86, 166 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, Phys. Rev. E 60, 1390 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    C. Vamoş, M. Crăciun, Automatic Trend Estimation (Springer, Dordrecht, 2012)Google Scholar
  21. 21.
    P. Chaudhuri, J.S. Marron, J. Am. Stat. Assoc. 94, 807 (1999)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    C. Vamoş, Phys. Rev. E 75, 036705 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Schumpeter, Business Cycles. A Theoretical, Historical and Statistical Analysis of the Capitalist Process (McGraw-Hill, New York, 1939)Google Scholar
  24. 24.
    P.J. Brockwell, R.A. Davies, Time Series: Theory and Methods (Springer-Verlag, New York, 1996)Google Scholar
  25. 25.
    S. Van Bellegem, in Wiley Handbook in Financial Engineering and Econometrics: Volatility Models and Their Applications, edited by L. Bauwens, C. Hafner, S. Laurent (Wiley, New York, 2011)Google Scholar
  26. 26.
    R.F. Engle, J.G. Rangel, Rev. Financ. Stud. 21, 1187 (2008) CrossRefGoogle Scholar
  27. 27.
    J. Voit, The Statistical Mechanics of Financial Markets (Springer, Berlin, 2005)Google Scholar
  28. 28.
    S.I. Resnick, Heavy tails Phenomena. Probabilistic and Statistical Modeling (Springer, New York, 2007)Google Scholar
  29. 29.
    C.C. Heyde, S.G. Kou, Oper. Res. Lett. 32, 399 (2004)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    J.P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Rev. E 68, 056110 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    M. McDonald, O. Suleman, S. Williams, S. Howison, N.F. Johnson, Phys. Rev. E 77, 046110 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    T.K.D. Peron, F.A. Rodrigues, Europhys. Lett. 96, 48004 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    S. Gheorghiu, M.-O. Coppens, Proc. Natl. Acad. Sci. 101, 15852 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 5305 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 6519 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.T. Popoviciu Institute of Numerical AnalysisRomanian AcademyCluj-NapocaRomania

Personalised recommendations