Advertisement

Electronic properties of double wall BN nanotube under hydrostatic pressure: an ab initio study

  • Wesdney S. Melo
  • Mauro B. Pereira
  • Humberto F. Silva Filho
  • Silvete Guerini
Regular Article
  • 113 Downloads

Abstract

Ab initio calculation was performed to study the structural transformation on a double wall boron nitride nanotubes bundle under hydrostatic pressure. The (10,0)@(17,0) zigzag DWBNNTs disposed into an hexagonal arrangement were chosen. Under compression the hexagonal arrangement as well as the circular cross section of the tubes were preserved up to a critical pressure value. At under this pressure, the tubes deform to an elliptic cross section and the bundle shape elongates. The discontinuity of percentage difference in volume clearly demonstrates the discontinuous nature of the structural transition. For pressure values above the critical, the electronic properties were observed to modify continuously. The energy gap suffers a continuous decrease up to the pressure of breakdown of the tubes.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    F. Zheng, G. Zhou, S. Hao, W. Duan, J. Chem. Phys. 123, 124716 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    T. Laude, Y. Matsui, A. Marraud, B. Jouffrey, Appl. Phys. Lett. 76, 3239 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    G. Guo, J. Lin, Phys. Rev. B 71, 165402 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    M. Mirzaei, N.L. Hadipour, Physica E 40, 800 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    D. Zhang, R.Q. Zhang, Chem. Phys. Lett. 371, 426 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    X. Chen et al., J. Am. Chem. Soc. 131, 890 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri, D. Golberg, Biotech. Bioeng. 101, 850 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Tangney, R. Capaz, C. Spataru, M. Cohen, S. Louie, Nano Lett. 5, 2268 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    J. Elliott, J. Sandler, A. Windle, R. Young, M. Shaffer, Phys. Rev. Lett. 92, 095501 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C. Li, T. Chou, Phys. Rev. B 69, 073401 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    M. Sluiter, V. Kumar, Y. Kawazoe, Phys. Rev. B 65, R161402 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    S. Guerini, V. Lemos, P. Piquini, S.S. Coutinho, Phys. Stat. Sol. B 224, 110 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S.S. Coutinho, V. Lemos, S. Guerini, Phys. Rev. B 80, 193408 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kinoshita, S. Hase, N. Ohno, Phys. Rev. B 80, 125114 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Ordejon, J.M. Soler, Phys. Rev. B 53, 10441 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    E. Artacho, D. Sànchez-Portal, P. Ordejon, A. Garcia, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wesdney S. Melo
    • 1
  • Mauro B. Pereira
    • 1
  • Humberto F. Silva Filho
    • 1
  • Silvete Guerini
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do MaranhãoSão LuisBrazil

Personalised recommendations