Multivariate bubbles and antibubbles

Regular Article

Abstract

In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Johansen, O. Ledoit, D. Sornette, Int. J. Theor. Appl. Finance 3, 219 (2000)MATHGoogle Scholar
  2. 2.
    D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, Princeton, 2003)Google Scholar
  3. 3.
    W.-X. Zhou, D. Sornette, Physica A 387, 243 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    W.-X. Zhou, D. Sornette, Physica A 388, 869 (2009)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Sieczka, D. Sornette, J.A. Holyst, Eur. Phys. J. B 82, 257 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Feigenbaum, Quant. Finance 1, 346 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Feigenbaum, Quant. Finance 1, 527 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Chang, J. Feigenbaum, Quant. Finance 6, 15 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    G. Chang, J. Feigenbaum, Quant. Finance 8, 723 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    D. Bree, D. Challet, P.P. Perrano, Quant. Finance 13, 275 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    D. Sornette, R. Woodard, W. Yan, W.-X. Zhou, Physica A 392, 4417 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P. Geraskin, D. Fantazzini, Eur. J. Finance 19, 366 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Lin, D. Sornette, Eur. J. Finance 19, 344 (2013)CrossRefGoogle Scholar
  14. 14.
    D. Bree, N. Joseph, Int. Rev. Finance Anal. 30, 287 (2013)CrossRefGoogle Scholar
  15. 15.
    J.R. Kurz-Kim, Appl. Econ. Lett. 19, 1465 (2012)CrossRefGoogle Scholar
  16. 16.
    Z.-Q. Jiang, W.-X. Zhou, D. Sornette, R. Woodard, K. Bastiaensen, P. Cauwels, J. Econ. Behav. Organ. 74, 149 (2010)CrossRefGoogle Scholar
  17. 17.
    H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, 2nd edn. (Blackwell, Malden, Massachussets, 1971)Google Scholar
  18. 18.
    J. Fry, Eur. Phys. J. B 85, 405 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J. Fry, Eur. Phys. J. B 87, 1 (2014)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Peston, L. Knight, How do we fix this mess? The economic Price of Having it all and the Route to Lasting Prosperity (Hodder and Stoughton, London, 2012)Google Scholar
  21. 21.
    W.-X. Zhou, D. Sornette, Physica A 348, 428 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    W.-X. Zhou, D. Sornette, Physica A 337, 586 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    K. Guo, W.-X. Zhou, S.-W. Cheng, D. Sornette, PLoS ONE 6, e22794 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    D. Sornette, P. Cauwels, Risks 2, 103 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Ardila, P. Cauwels, D. Sanadgol, D. Sornette, The Swiss Real Estate J. 6, 38 (2014)Google Scholar
  26. 26.
    D. Sornette, Y. Malevergne, Extreme Financial Risks: From Dependence to Risk Management (Springer, Berlin Heidelberg, New York, 2006)Google Scholar
  27. 27.
    A. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management (Princeton University Press, Princeton, 2005)Google Scholar
  28. 28.
    C. Hott, P. Monnin, J. Real Estate Finance Econ. 36, 427 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Black, P. Fraser, M. Hoesli, J. Bus. Finance Account. 33, 1535 (2006)CrossRefGoogle Scholar
  30. 30.
    R. Rowthorn, Spat. Econ. Anal., 5, 363 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Zeira, J. Monet. Econ. 43, 237 (1999)CrossRefGoogle Scholar
  32. 32.
    J.-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing. From Statistical Physics to Risk Management, 2nd edn. (Cambridge University Press, Cambridge, 2003)Google Scholar
  33. 33.
    W. Yan, R. Woodard, D. Sornette, Physica A 391, 1361 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    D. Sornette, A. Helmstetter, Physica A 318, 577 (2003)ADSCrossRefMATHGoogle Scholar
  35. 35.
    G. Pryce, K. Gibb, Real Estate Econ. 34, 377 (2006)CrossRefGoogle Scholar
  36. 36.
    D.R. Cox, D. Oakes, Analysis of Survival Data (Chapman and Hall/CRC, Boca Raton, London, New York, 1984)Google Scholar
  37. 37.
    J.Y. Campbell, A. Lo, J.A.C. MacKinlay, The Econometrics of Financial Time Series (Princeton University Press, Princeton, 1997)Google Scholar
  38. 38.
    J. Fry, J. Appl. Res. Finance 2, 131 (2010)ADSGoogle Scholar
  39. 39.
    D. MacKenzie, T. Spears, ‘The formula that killed Wall Street?’ The Gaussian Copula and the Material Cultures of Modelling (Working Paper, The University of Edinburgh, 2012)Google Scholar
  40. 40.
    L. Borland, Quant. Finance 12, 1367 (2012)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    J. Coaffee, Terrorism, Risk and the City (Ashgate, Aldershot, 2003)Google Scholar
  42. 42.
    N. Carnot, V. Koen, B. Tissot, Economic Forecasting and Policy, 2nd edn. (Palgrave Macmillan, Basingstoke, New York, 2011)Google Scholar
  43. 43.
    T. Plummer, Forecasting Financial Markets. The Psychology of Successful Investing (Kogan Page, London, 2006)Google Scholar
  44. 44.
    D. Hillier, S. Ross, R. Westerfeld, J. Jaffe, B. Jordan, Corporate Finance, 4th edn. (McGraw-Hill, Maidenhead, Berkshire, 2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Management SchoolThe University of SheffieldSheffieldUK

Personalised recommendations