Coercivity reduction in a two-dimensional array of nano-particles

  • Michel Morales-Meza
  • Paul P. Horley
  • Alexander Sukhov
  • Jamal Berakdar
Regular Article

Abstract

We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.

Keywords

Solid State and Materials 

References

  1. 1.
    P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, E. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) ADSCrossRefGoogle Scholar
  3. 3.
    I. Kaitsu, R. Inamura, J. Toda, T. Morita, Fujitsu Sci. Tech. J. 42, 122 (2006) Google Scholar
  4. 4.
    R.C. Sousa, I.L. Prejbeanu, C.R. Physique 6, 1013 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425, 380 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    S. Kaka, M.R. Pufall, W.R. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Nature 437, 389 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    I. Žutic, J. Fabian, S. Das, Rev. Mod. Phys. 76, 323 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    M.D. Stiles, J. Miltat, Top. Appl. Phys. 101, 1 (2006) CrossRefGoogle Scholar
  9. 9.
    T.J. Silva, W.H. Rippard, J. Magn. Magn. Mater. 320, 1260 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    L. Fricke, S. Serrano-Guisan, H.W. Schumacher, Physica B 407, 1153 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Ya.B. Bazaliy, B.A. Jones, S.C. Zhang, Phys. Rev. B 69, 094421 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 72, 14446 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, Comput. Mater. Sci. 28, 366 (2003) CrossRefGoogle Scholar
  14. 14.
    A. Hubert, R. Schaefer, Magnetic Domains (Springer, Berlin, Heidelberg, 1998) Google Scholar
  15. 15.
    M.A. Perry, T.J. Flack, D.K. Koltsov, M.E. Welland, J. Magn. Magn. Mater. 314, 75 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    C.C. Dantas, Physica E 44, 675 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    K.F. Braun, S. Sievers, M. Albrecht, U. Siegner, K. Landfester, V. Holzapfel, J. Magn. Magn. Mater. 321, 3719 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    A. Berger, Physica B 407, 1322 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London, 2004) Google Scholar
  20. 20.
    J.A. Osborn, Phys. Rev. 67, 351 (1945) ADSCrossRefGoogle Scholar
  21. 21.
    W.F. Brown, Magnetostatic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962) Google Scholar
  22. 22.
    J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010) Google Scholar
  23. 23.
    M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 263, L1 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 285, L1 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    M. Beleggia, M. De Graef, Y.T. Millev, D.A. Goode, G. Rowlands, J. Phys. D 38, 3333 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    M. Beleggia, M. De Graef, Y.T. Millev, J. Phys. D 39, 891 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    J.-K. Ha, R. Hertel, J. Kirschner, Phys. Rev. B 67, 224432 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    S. Cherifi, R. Hertel, J. Kirschner, H. Wang, R. Belkhou, A. Locatelli, S. Heun, A. Pavlovska, E. Bauer, J. Appl. Phys. 98, 043901 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935) MATHGoogle Scholar
  30. 30.
    T.L. Gilbert, Phys. Rev. 100, 1243 (1955) Google Scholar
  31. 31.
    T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007) Google Scholar
  33. 33.
    M. Morales-Meza, P.F. Zubieta-Rico, P.P. Horley, A. Sukhov, V.R. Vieira, Physica B (2014), DOI:10.1016/j.physb.2014.04.017
  34. 34.
    E.Yu. Vedmedenko, A. Ghazi, J.-C. S. Lévy, Phys. Rev. B 59, 3329 (1999) ADSCrossRefGoogle Scholar
  35. 35.
    V. Novosad, M. Grimsditch, K.Yu. Guslienko, P. Vavassori, Y. Otani, S.D. Bader, Phys. Rev. B 66, 052407 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. B 76, 224426 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    K.Yu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008) Google Scholar
  38. 38.
    U. Nowak, in Annual Reviews of Computational Physics IX, edited by D. Stauffer (World Scientific, Singapore, 2001), p. 105 Google Scholar
  39. 39.
    S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E.Y. Vedmedenko, R. Wiesendager, Phys. Rev. Lett. 103, 127202 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    For a recent review, see W.T. Coffey, Y.P. Kalmykov, J. Appl. Phys. 112, 121301 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michel Morales-Meza
    • 1
  • Paul P. Horley
    • 1
  • Alexander Sukhov
    • 1
    • 2
  • Jamal Berakdar
    • 2
  1. 1.Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/MonterreyChihuahuaMexico
  2. 2.Institut für Physik, Martin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations