Advertisement

Interaction-created effective flat bands in conducting polymers

  • Zsolt Gulácsi
Regular Article

Abstract

For a general class of conducting polymers with arbitrary large unit cell and different on-site Coulomb repulsion values on different type of sites, I demonstrate in exact terms the emergence possibility of an upper, interaction-created “effective” flat band. This last appears as a consequence of a kinetic energy quench accompanied by a strong interaction energy decrease, and leads to a non-saturated ferromagnetic state. This ordered state clearly differs from the known flat-band ferromagnetism. This is because it emerges in a system without bare flat bands, requires inhomogeneous on-site Coulomb repulsions values, and possesses non-zero lower interaction limits at the emergence of the ordered phase.

Keywords

Solid State and Materials 

References

  1. 1.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    V.I. Anisimov, F. Aryasetianwan, A.I. Lichtenstein, J. Phys: Condens. Matter 9, 767 (1997)ADSGoogle Scholar
  3. 3.
    F. Aryasetianwan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Städele, R.M. Martin, Phys. Rev. Lett. 84, 6070 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R. Takahashi, S. Murakami, Phys. Rev. B 88, 235303 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    G. Möller, N.R. Cooper, Phys. Rev. Lett. 108, 045306 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    O. Derzhko, J. Richter, A. Honecker, R. Moessner, Phys. Rev. B 81, 014421 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Gulácsi, Phys. Rev. B 77, 245113 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Z. Gulácsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 105, 266403 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Gulácsi, Int. J. Mod. Phys. B 27, 1330009 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Dhoot et al., Phys. Rev. Lett. 96, 246403 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A.C.R. Grayson et al., Nat. Mater. 2, 767 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    R. McNeill et al., Aust. J. Chem. 16, 1056 (1963)CrossRefGoogle Scholar
  20. 20.
    J.W. van der Horst, P.A. Bobbert, M.A.J. Michels, Phys. Rev. Lett. 83, 4413 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    O.R. Nascimento et al., Phys. Rev. B 67, 14422 (2003)CrossRefGoogle Scholar
  22. 22.
    F.R. de Paula et al., J. Magn. Magn. Mater. 320, 193 (2008)CrossRefGoogle Scholar
  23. 23.
    A.A. Correa et al., Synth. Met. 121, 1836 (2001)CrossRefGoogle Scholar
  24. 24.
    A.J. Heeger et al., Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    T.O. Wehling et al., Phys. Rev. Lett. 106, 236805 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    G. Brocks, J. Van den Brink, A.F. Morpurgo, Phys. Rev. Lett. 93, 146405 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Suwa et al., Phys. Rev. B 68, 174419 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    R. Arita et al., Phys. Rev. Lett. 88, 127202 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    R. Arita et al., Phys. Rev. B 68, 140403(R) (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Gulácsi, M. Gulacsi, Phys. Rev. Lett. 73, 3239 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    R. Trencsényi, E. Kovács, Z. Gulácsi, Phil. Mag. 89, 1953 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    R. Trencsényi, Z. Gulácsi, Phil. Mag. 92, 4657 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    R. Trencsényi, K. Gulácsi, E. Kovács, Z. Gulácsi, Ann. Phys. (Berlin) 523, 741 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    R. Trencsényi, Z. Gulácsi, Eur. Phys. J. B 75, 511 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M. Gulacsi, H. Van Beijeren, A.C. Levi, Phys. Rev. E 47, 2473 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    M. Gulacsi, Phil. Mag. B 76, 731 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    M. Gulacsi, R. Chan, J. Supercond. 14, 651 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    R. Chan, M. Gulacsi, Phil. Mag. Lett. 81, 673 (2001)CrossRefGoogle Scholar
  39. 39.
    R. Chan, M. Gulacsi, Phil. Mag. 84, 1265 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Gulácsi, D. Vollhardt, Phys. Rev. B 72, 075130 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Z. Gulácsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Gulácsi, A. Kampf, D. Vollhardt, Prog. Theor. Phys. Suppl. 176, 1 (2008)ADSCrossRefMATHGoogle Scholar
  44. 44.
    I. Orlik, Z. Gulácsi, Phil. Mag. Lett. 78, 177 (1998)CrossRefGoogle Scholar
  45. 45.
    Z. Gulácsi, I. Orlik, J. Phys. A 34, L359 (2001)CrossRefGoogle Scholar
  46. 46.
    P. Gurin, Z. Gulácsi, Phys. Rev. B 64, 045118 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    Z. Gulácsi, Eur. Phys. J. B 30, 295 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Z. Gulácsi, Phys. Rev. B 66, 165109 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Z. Gulácsi, D. Vollhardt, Phys. Rev. Lett. 91, 186401 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Gulácsi, Phys. Rev. B 69, 054204 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Z. Gulácsi, M. Gulacsi, Phys. Rev. B 73, 014524 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary

Personalised recommendations