Advertisement

Multivariate pressure effects on an electron hopping process in ferroelectric KTa1−xNbxO3

  • Shimon E. Lerner
  • Yuri Feldman
  • Michal Mierzwa
  • Marian Paluch
  • Aharon J. Agranat
  • Paul Ben Ishai
Regular Article
  • 94 Downloads

Abstract

The effect induced by the presence of a polaron related relaxation process on the dielectric properties of a ferroelectric KTa1−x Nb x O3 (KTN) crystal was investigated (10-2−106 Hz, at 300−375 K) using broadband dielectric spectroscopy. Characterization of the process using just the standard frequency domain dielectric parameters can nonetheless provide penetrating insight into its nature and origins. The three parameters, namely: relaxation time (τ), Cole-Cole loss broadening (α), and dielectric strength (Δϵ) provide each one in its own way, much useful and often overlooked information. The Activation Energy along with the Meyer-Neldel dependance, both extracted from τ serve to illuminate the dynamic properties. At the same time, α and especially the combined α(lnτ) relationship, expose the fractal structure of the underlying landscape. Finally, the static parameter Δϵ, enables quantification of the dipolar correlations. Hydrostatic pressure (up to 7.5 kbar) was applied to gently perturb the system and observe the outcome on all of the various parameters. This additional degree of freedom allows for a much more comprehensive exploration of the phase space behavior of the system.

Keywords

Solid State and Materials 

References

  1. 1.
    R. Blinc, B. Zeks, Soft modes in ferroelectrics and antiferroelectrics (North-Holland Pub. Co., Amsterdam; American Elsevier Pub. Co., New York, 1974) Google Scholar
  2. 2.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006) CrossRefADSGoogle Scholar
  3. 3.
    R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Adv. Phys. 60, 229 (2011) CrossRefADSGoogle Scholar
  4. 4.
    D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S. Chi, J. Leo, X. Long, Y.-J. Xie, A.A. Bokov, Z.-G. Ye, P. Ganesh, P.M. Gehring, Proc. Natl. Acad. Sci. 111, 1754 (2014) CrossRefADSGoogle Scholar
  5. 5.
    G.A. Samara, J. Phys.: Condens. Matter 15, R367 (2003) ADSGoogle Scholar
  6. 6.
    A. Puzenko, P.B. Ishai, Y. Feldman, Phys. Rev. Lett. 105, 037601 (2010) CrossRefADSGoogle Scholar
  7. 7.
    D. Emin, Phys. Rev. B 61, 14543 (2000) CrossRefADSGoogle Scholar
  8. 8.
    Y. Feldman, A. Puzenko, Y. Ryabov, Chem. Phys. 284, 139 (2002) CrossRefADSGoogle Scholar
  9. 9.
    P. Ben Ishai, C.E.M. de Oliveira, Y. Ryabov, Y. Feldman, A.J. Agranat, Phys. Rev. B 70, 132104 (2004) CrossRefADSGoogle Scholar
  10. 10.
    S. Wakimoto, G.A. Samara, R.K. Grubbs, E.L. Venturini, L.A. Boatner, G. Xu, G. Shirane, S.H. Lee, Phys. Rev. B 74, 54101 (2006) CrossRefADSGoogle Scholar
  11. 11.
    I.A. Kornev, L. Bellaiche, P. Bouvier, P.-E. Janolin, B. Dkhil, J. Kreisel, Phys. Rev. Lett. 95, 196804 (2005) CrossRefADSGoogle Scholar
  12. 12.
    A.J. Agranat, in Infrared Holography for Optical Communications number 86 in Topics in Applied Physics, edited by P. Boffi, D. Piccinin, M.C. Ubaldi (Springer, Berlin, Heidelberg, 2003), pp. 133–161 Google Scholar
  13. 13.
    S. Triebwasser, Phys. Rev. 114, 63 (1959) CrossRefADSGoogle Scholar
  14. 14.
    J. Toulouse, R.K. Pattnaik, J. Phys. Chem. Solids 57, 1473 (1996) CrossRefADSGoogle Scholar
  15. 15.
    G. Burns, F. Dacol, Solid State Commun. 42, 9 (1982) CrossRefADSGoogle Scholar
  16. 16.
    P. Ben Ishai. Ph.D. thesis, Hebrew University of Jerusalem, 2009 Google Scholar
  17. 17.
    A. Do, M. Paluch, H. Sillescu, G. Hinze, J. Chem. Phys. 117, 6582 (2002) CrossRefADSGoogle Scholar
  18. 18.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967) CrossRefGoogle Scholar
  19. 19.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1951) CrossRefADSGoogle Scholar
  20. 20.
    H. Frohlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss, 2nd edn. (Oxford University Press, USA, 1987) Google Scholar
  21. 21.
    G. Bitton, Y. Feldman, A.J. Agranat, J. Non-Cryst. Solids 305, 362 (2002) CrossRefADSGoogle Scholar
  22. 22.
    S.E. Lerner, P. Ben Ishai, A. Agranat, Y. Feldman, J. Non-Cryst. Solids 353, 4422 (2007) CrossRefADSGoogle Scholar
  23. 23.
    G. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, 1st edn. (CRC Press, 1996) Google Scholar
  24. 24.
    A. Yelon, B. Movaghar, Phys. Rev. Lett. 65, 618 (1990) CrossRefADSGoogle Scholar
  25. 25.
    Y. Girshberg, Y. Yacoby, Solid State Commun. 103, 425 (1997) CrossRefADSGoogle Scholar
  26. 26.
    Y.E. Ryabov, Y. Feldman, N. Shinyashiki, S. Yagihara, J. Chem. Phys. 116, 8610 (2002) CrossRefADSGoogle Scholar
  27. 27.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992) CrossRefADSGoogle Scholar
  28. 28.
    E. Dul’kin, S. Kojima, M. Roth, Europhys. Lett. 97, 57004 (2012) CrossRefADSGoogle Scholar
  29. 29.
    J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939) CrossRefADSGoogle Scholar
  30. 30.
    P. Ben Ishai, S.E. Lerner, A. Puzenko, Y. Feldman, in NATO Science for Peace and Security Series B: Physics and Biophysics, edited by Y.P. Kalmykov (Springer, Netherlands, 2013), pp. 37–48 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shimon E. Lerner
    • 1
  • Yuri Feldman
    • 1
  • Michal Mierzwa
    • 2
  • Marian Paluch
    • 2
  • Aharon J. Agranat
    • 1
  • Paul Ben Ishai
    • 1
  1. 1.The Hebrew University of JerusalemJerusalemIsrael
  2. 2.Institute of Physics, Silesian UniversityKatowicePoland

Personalised recommendations