Skip to main content
Log in

Fisher information of Markovian decay modes

Nonequilibrium equivalence principle, dynamical phase transitions and coarse graining

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We introduce the Fisher information in the basis of decay modes of Markovian dynamics, arguing that it encodes important information about the behavior of nonequilibrium systems. In particular we generalize an orthonormality relation between decay eigenmodes of detailed balanced systems to normal generators that commute with their time-reversal. Viewing such modes as tangent vectors to the manifold of statistical distributions, we relate the result to the choice of a coordinate patch that makes the Fisher-Rao metric Euclidean at the steady distribution, realizing a sort of statistical equivalence principle. We then classify nonequilibrium systems according to their spectrum, showing that a degenerate Fisher matrix is the signature of the insurgence of a class of dynamical phase transitions between nonequilibrium regimes, characterized by level crossing and power-law decay in time of suitable order parameters. An important consequence is that normal systems cannot manifest critical behavior. Finally, we study the Fisher matrix of systems with time-scale separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. F. Weinhold, J. Chem. Phys. 63, 2479 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. B. Andresen et al., Phys. Rev. A 37, 845 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Mrugała et al., Phys. Rev. A 41, 3156 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Propenko, T.L. Lizier, O. Obst, X.R. Wang, Phys. Rev. E 84, 041116 (2011)

    Article  ADS  Google Scholar 

  6. E.T. Jaynes, Proc. IEEE 70, 939 (1982).

    Article  ADS  Google Scholar 

  7. S. Kullback, Information Theory and Statistics (John Wiley and Sons, New York, 1959)

  8. J.C. Baez, Information Geometry (Part 1-7), 2011, available at: http://johncarlosbaez.wordpress.com/ (retrieved on April 23, 2013)

  9. R.A. Fisher, Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  10. C.R. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945)

    MathSciNet  MATH  Google Scholar 

  11. Algebraic and Geometric Methods in Statistics, edited by P. Gibilisco, E. Riccomagno, M.P. Rogantin, H.P. Wynn (Cambridge University Press, Cambridge, 2010)

  12. T. Obata, H. Hara, K. Endo, Phys. Rev. A 45, 6997 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. G.E. Crooks, Phys. Rev. Lett. 99, 100602 (2007)

    Article  ADS  Google Scholar 

  14. E.H. Feng, G.E. Crooks, Phys. Rev. E 79, 012104 (2009)

    Article  ADS  Google Scholar 

  15. M. Polettini, M. Esposito, Phys. Rev. E. 88, 012112 (2013).

    Article  ADS  Google Scholar 

  16. D.C. Brody, L.P. Hughston, Proc. R. Soc. London A 454, 2445 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

  18. P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007)

    Article  ADS  Google Scholar 

  19. C. Maes, K. Netočný, B. Wynants, J. Phys. A 45, 455001 (2012)

    Article  MathSciNet  Google Scholar 

  20. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1997)

  21. D. Andrieux, arXiv:1103.2243 [cond-mat] (2011)

  22. S.S. Dragomir, B. Mond, Extracta Mathematicae 11.2, 282 (1996)

    MathSciNet  Google Scholar 

  23. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  24. V.Y. Chernyak, M. Chertkov, C. Jarzynski, J. Stat. Mech. 2006, P08001 (2006)

  25. M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999)

  27. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

  28. M. Esposito, Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Polettini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polettini, M. Fisher information of Markovian decay modes. Eur. Phys. J. B 87, 215 (2014). https://doi.org/10.1140/epjb/e2014-50142-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50142-1

Keywords

Navigation