Momentum autocorrelation function of a classical oscillator chain with alternating masses

Regular Article

Abstract

A classical harmonic oscillator chain with alternating masses is studied using the recurrence relations method. The momentum autocorrelation function changes from combination of cosines to Bessel functions when the number of oscillators increases from finite to infinite bringing about irreversibility. Optic and acoustic branches of the momentum autocorrelation function are expanded in terms of even-order Bessel functions and are shown to be finite and well behaved. Irreversibility and ergodicity are discussed.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipotova, Theory of Lattice Dynamics (Academic Press, New York, 1971)Google Scholar
  2. 2.
    C. Kettle, Introduction to Solid State Physics, 3rd edn. (John Wiley & Sons, New York, 1967), Chap. 5Google Scholar
  3. 3.
    P. Dean, J. Inst. Maths Appl. 3, 98 (1967)CrossRefGoogle Scholar
  4. 4.
    A.S. Barker Jr, A.J. Sievers, Rev. Mod. Phys. 47, S1 (1975)CrossRefGoogle Scholar
  5. 5.
    R.F. Fox, Phys. Rev. A 27, 3216 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    J. Florencio Jr, M.H. Lee, Phys. Rev. B 31, 3231 (1985)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M.H. Lee, J. Florencio Jr, J. Hong, J. Phys. A 22, L331 (1988)CrossRefGoogle Scholar
  8. 8.
    M.B. Yu, J.H. Kim, M.H. Lee, J. Lumin. 45, 1447 (1990)CrossRefGoogle Scholar
  9. 9.
    M.H. Lee, Phys. Rev. Lett. 49, 1072 (1982)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M.H. Lee, J. Hong, J. Florencio Jr, Phys. Scripta T 19, 498 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sen, Phys. Rev. B 44, 7444 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    J. Kim, I. Sawada, Phys. Rev. E 61, R2172 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Mokshin, R.M. Yulmetyev, P. Hanggi, Phys Rev. Lett. 95, 200601 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S.X. Chen, Y.Y. Shen, X.M. Kong, Phys. Rev. B 82, 174404 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A. Wierling, Eur. Phys. J. B 85, 20571 (2012)CrossRefGoogle Scholar
  16. 16.
    G.B. Arkfen, H.J. Weber, Mathematical Methods for Physicists (Academic Press, New York, 1995), p. 814Google Scholar
  17. 17.
    M.H. Lee, Phys. Rev. Lett. 87, 250061 (2001)Google Scholar
  18. 18.
    M.H. Lee, Phys. Rev. Lett. 98, 190601 (2007)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    K. Huang, Statistical Mechanics (John Weley & Sons, New York, 1987), p. 90Google Scholar
  20. 20.
    M.H. Lee, Physica A 314, 583 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    M.H. Lee, Physica A 365, 150 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.AtlantaUSA

Personalised recommendations