Advertisement

Oxygen submonolayers on Mo(112): structure and work function

Regular Article

Abstract

Correlation between the work function change and the structure of oxygen submonolayers on the Mo(112) surface are studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES) and contact potential difference (CPD) methods. Oxygen was adsorbed at temperatures T = 78−300 K and thereafter the adlayers were annealed in a wide temperature range up to oxygen desorption. Temperature induced irreversible and reversible phase transitions are investigated. With coverage growth, formation of the monolayer proceeds through three first-order phase transitions, one of which is featured by a specific change in the course of the work function dependence on coverage. It is suggested that during this transition the oxygen adatoms may change their sites on the substrate from those of a short-bridge type to quasi-threefold ones, thus increasing their coordination number from two to three.

Keywords

Solid State and Materials 

References

  1. 1.
    T. Sasaki, Y. Goto, R. Tero, K. Fukui, Y. Iwasawa, Surf. Sci. 502-503, 136 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    T. Schroeder, J.B. Giorgi, A. Hammoudeh, N. Magg, M. Bäumer, H.-J. Freund, Phys. Rev. B 65, 115411 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    T. Schroeder, J. Zegenhagen, N. Magg, B. Immaraporn, H.-J. Freund, Surf. Sci. 552, 85 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kaya, J. Weissenrieder, D. Stacchiola, T.K. Todorova, M. Sierka, J. Sauer, S. Shaikhutdinov, H.-J. Freund, Surf. Sci. 602, 3308 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    G.J. Dooley III, T.W. Haas, J. Vac. Sci. Tech. 7, 49 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    K. Fukui, T. Aruga, Y. Iwasawa, Surf. Sci. 281, 241 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    A. Kiejna, R.M. Nieminen, J. Chem. Phys. 122, 1 (2005)CrossRefGoogle Scholar
  8. 8.
    Yu.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy, N.Yu. Taranets, J. Eur. Ceram. Soc. 28, 717 (2008)CrossRefGoogle Scholar
  9. 9.
    Yu.V. Naidich, T.V. Sidorenko, A.V. Durov, Paton Weld. J., 16 (2009)Google Scholar
  10. 10.
    Yu.V. Naidich, T.V. Sidorenko, A.V. Durov, Avtomaticheskaya Svarka, 22 (2009)Google Scholar
  11. 11.
    Yu.V. Naidich, T.V. Sidorenko, Dopovidi NAN Ukrainy 5, 110 (2009)Google Scholar
  12. 12.
    M.S. El-Genk, D.V. Paramonov, Thermionic Conversion (Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley & Sons, New York, 1999)Google Scholar
  13. 13.
    M.S. El-Genk, T.M. Schriener, J. Nuc. Eng. Des. 241, 2339 (2011) CrossRefGoogle Scholar
  14. 14.
    E.V. Klimenko, A.G. Naumovets, Sov. Phys. Tech. Phys. 24, 710 (1979)Google Scholar
  15. 15.
    E.V. Klimenko, A.G. Naumovets, Zhur. Tekh. Fiz. 49, 1282 (1979) Google Scholar
  16. 16.
    A.G. Naumovets, in The Chemical Physics of Solid Surfaces, edited by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1994), p. 163Google Scholar
  17. 17.
    A.K. Santra, B.K. Min, D.W. Goodman, Surf. Sci. 513, L441 (2002) CrossRefGoogle Scholar
  18. 18.
    P.J. Estrup, E.G. McRae, Surf. Sci. 25, 1 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    I.F. Lyuksyutov, A.G. Naumovets, V. Pokrovsky, Two-Dimensional Crystals (Academic Press, New York, 1992) Google Scholar
  20. 20.
    I.F. Lyuksyutov, A.G. Fedorus, Sov. Phys. JETP 53, 1317 (1981) Google Scholar
  21. 21.
    G.-C. Wang, T.-M. Lu, Phys. Rev. B 31, 5918 (1985) ADSCrossRefGoogle Scholar
  22. 22.
    I.N. Yakovkin, Surf. Sci. 577, 229 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Tracy, J.M. Blakely, Surf. Sci. 15, 257 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    M.L. Colaianni, J.G. Chen, W.H. Weinberg, J.T. Yates Jr., Surf. Sci. 279, 211 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    J. Kröger, S. Lehwald, H. Ibach, Phys. Rev. B 58, 1578 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    R. Smoluchowski, Phys. Rev. 60, 661 (1941)ADSMATHCrossRefGoogle Scholar
  27. 27.
    V.D. Osovskii, D.Yu. Balakin, I.N. Zasimovich, E.V. Klimenko, N.V. Petrova, Yu.G. Ptushinsky, I.N. Yakovkin, Ukr. Fiz. Zh. 54, 200 (2009)Google Scholar
  28. 28.
    N.W. Haas, A.G. Jackson, J. Chem. Phys. 44, 2921 (1966)ADSCrossRefGoogle Scholar
  29. 29.
    E. Bauer, H. Poppa, Surf. Sci. 127, 243 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    C.C. Chang, L.H. Germer, Surf. Sci. 8, 115 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    G.-C. Wang, T.-M. Lu, Phys. Rev. B 28, 6795 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    G. Godzik, H. Pfnür, I.F. Lyuksyutov, Europhys. Lett. 56, 67 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    G. Godzik, T. Block, H. Pfnür, Phys. Rev. B 69, 235414 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    N.V. Petrova, I.N. Yakovkin, Phys. Rev. B 76, 205401 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    O.M. Braun, V.K. Medvedev, Sov. Phys. Usp. 32, 328 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    O.M. Braun, V.K. Medvedev, Usp. Fiz. Nauk 157, 631 (1989)CrossRefGoogle Scholar
  37. 37.
    H.L. Davis, G.-C. Wang, Bull. Am. Phys. Soc. 29, 221 (1984)Google Scholar
  38. 38.
    H. Bu, O. Grizzi, M. Shi, J.W. Rabalais, Phys. Rev. B 40, 10147 (1989)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Physics, National Academy of Sciences of UkraineKyiv-28Ukraine

Personalised recommendations