Skip to main content
Log in

Transport in a disordered tight-binding chain with dephasing

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We studied transport properties of a disordered tight-binding model (XX spin chain) in the presence of dephasing. Focusing on diffusive behaviour in the thermodynamic limit at high energies, we analytically derived the dependence of conductivity on dephasing and disorder strengths. As a function of dephasing, conductivity exhibits a single maximum at the optimal dephasing strength. The scaling of the position of this maximum with disorder strength is different for small and large disorders. In addition, we studied periodic disorder for which we found a resonance phenomenon, with conductivity having two maxima as a function of dephasing strength. If the disorder is non-zero only at a random fraction of all sites, conductivity is approximately the same as in the case of a disorder on all sites but with a rescaled disorder strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Thouless, S. Kirkpatrick, J. Phys. C 14, 235 (1981)

    Article  ADS  Google Scholar 

  2. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  3. M. Büttiker, Phys. Rev. B 32, 1846 (1985)

    Article  ADS  Google Scholar 

  4. J.L. D’Amato, H.M. Pastawski, Phys. Rev. B 41, 7411 (1990)

    Article  ADS  Google Scholar 

  5. J. Maassen, F. Zahid, H. Guo, Phys. Rev. B 80, 125423 (2009)

    Article  ADS  Google Scholar 

  6. D. Nozaki, Y. Girard, K. Yoshizawa, J. Chem. Phys. 112, 17408 (2008)

    Google Scholar 

  7. C.J. Cattena, R.A. Bustos-Marún, H.M. Pastawski, Phys. Rev. B 82, 144201 (2010)

    Article  ADS  Google Scholar 

  8. D. Nozaki, C. Gomes da Rocha, H.M. Pastawski, G. Cuniberti, Phys. Rev. B 85, 155327 (2012)

    Article  ADS  Google Scholar 

  9. R. Golizadeh-Mojarad, S. Datta, Phys. Rev. B 75, 081301(R) (2007)

    Article  ADS  Google Scholar 

  10. M. Zilly, O. Ujsághy, D.E. Wolf, Eur. Phys. J. B 68, 237 (2009)

    Article  ADS  Google Scholar 

  11. M. Zilly, O. Ujsághy, M. Woelki, D.E. Wolf, Phys. Rev. B 85, 075110 (2012)

    Article  ADS  Google Scholar 

  12. T. Stegmann, M. Zilly, O. Ujsághy, D.E. Wolf, Eur. Phys. J. B 85, 264 (2012)

    Article  ADS  Google Scholar 

  13. E. Kogan, Eur. Phys. J. B 61, 181 (2008)

    Article  ADS  Google Scholar 

  14. H. Ishii, S. Roche, N. Kobayashi, K. Hirose, Phys. Rev. Lett. 104, 116801 (2010)

    Article  ADS  Google Scholar 

  15. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Žnidarič, J. Stat. Mech. 2010, L05002 (2010)

    Article  Google Scholar 

  18. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  19. C. Timm, Phys. Rev. B 77, 195416 (2008)

    Article  ADS  Google Scholar 

  20. M.B. Plenio, S.F. Huelga, New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  21. P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  22. F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, J. Chem. Phys. 131, 105106 (2009)

    Article  ADS  Google Scholar 

  23. S. Hoyer, M. Sarovar, K.B. Whaley, New J. Phys. 12, 065041 (2010)

    Article  ADS  Google Scholar 

  24. I. Kassal, A. Aspuru-Guzik, New J. Phys. 14, 053041 (2012)

    Article  ADS  Google Scholar 

  25. M. Žnidarič, Phys. Rev. E 83, 011108 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Eisler, J. Stat. Mech. 2011, P06007 (2011)

    Article  Google Scholar 

  27. K. Temme, M.M. Wolf, F. Verstraete, New J. Phys. 14, 075004 (2012)

    Article  ADS  Google Scholar 

  28. B. Horstmann, J.I. Cirac, G. Giedke, arXiv:1207.1653 [quant-ph] (2012)

  29. B. Žunkovič, T. Prosen, J. Stat. Mech. 2010, P08016 (2010)

    Article  Google Scholar 

  30. T. Prosen, J. Stat. Mech. 2010, P07020 (2010)

    Article  MathSciNet  Google Scholar 

  31. M. Žnidarič, T. Prosen, G. Benenti, G. Casati, D. Rossini, Phys. Rev. E 81, 051135 (2010)

    Article  ADS  Google Scholar 

  32. P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928)

    Article  ADS  MATH  Google Scholar 

  33. P.W. Anderson, Rev. Mod. Phys. 50, 191 (1978)

    Article  ADS  Google Scholar 

  34. M. Žnidarič, New J. Phys. 12, 043001 (2010)

    Article  Google Scholar 

  35. B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  36. P.W. Anderson, D.J. Thouless, E. Abrahams, D.S. Fisher, Phys. Rev. B 22, 3519 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Schomerus, M. Titov, Phys. Rev. B 67, 100201(R) (2003)

    Article  ADS  Google Scholar 

  38. L.I. Deych, M.V. Erementchouk, A.A. Lisyansky, B.L. Altshuler, Phys. Rev. Lett. 91, 096601 (2003)

    Article  ADS  Google Scholar 

  39. D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 37, 6622 (1988)

    Article  ADS  Google Scholar 

  40. A.R. Kolovsky, A.V. Ponomarev, H.J. Korsch, Phys. Rev. A 66, 053405 (2002)

    Article  ADS  Google Scholar 

  41. D. Segal, A. Nitzan, W.B. Davis, M.R. Wasielewski, M.A. Ratner, J. Phys. Chem. B 104, 3817 (2000)

    Article  Google Scholar 

  42. M. Kappus, F. Wegner, Z. Phys. B 45, 15 (1981)

    Article  ADS  Google Scholar 

  43. B. Derrida, E. Gardner, J. Phys. 45, 1283 (1984)

    Article  MathSciNet  Google Scholar 

  44. J.C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989)

    Article  ADS  Google Scholar 

  45. D.H. Dunlap, H.-L. Wu, P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990)

    Article  ADS  Google Scholar 

  46. G. Theodorou, M.H. Cohen, Phys. Rev. B 13, 4597 (1976)

    Article  ADS  Google Scholar 

  47. F. Delyon, H. Kunz, B. Souillard, J. Phys. A 16, 25 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. M. Hilke, J. Phys. A 30, L367 (1997)

    Article  ADS  MATH  Google Scholar 

  49. N. Hlubek, P. Ribeiro, R. Saint-Martin, S. Nishimoto, A. Revcolevschi, S.-L. Drechsler, G. Behr, J. Trinckauf, J.E. Hamann-Borrero, J. Geck, B. Büchner, C. Hess, Phys. Rev. B 84, 214419 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Žnidarič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žnidarič, M., Horvat, M. Transport in a disordered tight-binding chain with dephasing. Eur. Phys. J. B 86, 67 (2013). https://doi.org/10.1140/epjb/e2012-30730-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30730-9

Keywords

Navigation