Advertisement

Carrier generation and recombination rate in armchair graphene nanoribbons

Regular Article

Abstract

Armchair graphene nanoribbons (A-GNRs), with a tunable energy gap, are an alternative structure for use in optoelectronic devices. The performance of these optoelectronic devices critically depends on the carrier generation and recombination rates, which have been calculated in this paper. Because of the 1D band structure of A-GNRs, carrier scattering, generation and recombination rates in these structures would be completely different from those in 2D graphene sheets. In this paper, using the tight binding model, and by considering the edge deformation and Fermi golden rule, we find the band structure, and the carrier generation and recombination rates for pure A-GNR due to optical and acoustic phonons, as well as Line Edge Roughness (LER) scatterings. The obtained results show that the total generation and recombination rates increase with increasing A-GNR width and eventually saturate for wide ribbons. These rates increase as the carrier concentration is increased (which has been considered homogenous along ribbon width) and temperature. Also, despite the large LER scattering in narrow ribbons, the generation and recombination rates are less for A-GNRs than for graphene sheets. Using this theoretical model, one can find the suitable A-GNR structure for the design of optoelectronic devices.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    K.V. Emtsev et al., Nature Materials 8, 203 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji., J. Appl. Phys. 107, 054512 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, J. Infra. Phys. Tech. 54, 302 (2011) CrossRefGoogle Scholar
  4. 4.
    T. Mueller, F. Xia, P. Avouris, Nature Photon. 4, 297 (2010) CrossRefGoogle Scholar
  5. 5.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nature Nanotech. 6, 630 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    D. Reddy, L.F. Register, G.D. Carpenter, S.K. Banerjee, J. Phys. D: Appl. Phys. 44, 313001 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    Y.M. Lin, J.C. Tsang, M. Freitag, P. Avouris, Nanotech. 18, 295202 (2007) CrossRefGoogle Scholar
  8. 8.
    M.Y. Han, B. Ozilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    T. Tanaka et al., Solid State Commun. 123, 33 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    T. Fang, A. Konar, H. Xing, D. Jena, Phys. Rev. B 78, 205403 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M.V.S. Chandrashekhar, M.G. Spencer, Phys. Rev. B 79, 115447 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    K. Seeger, Semiconductor Physics: An Introduction, 7th edn. (Springer Verlag, Berlin, 1999), p. 175 Google Scholar
  14. 14.
    G. Pennington, A. Goldsman, A. Akturk, A.E. Wickenden, Appl. Phys. Lett. 90, 062110 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    F. Rana, Phys. Rev. B 76, 155431 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Physics, University of TabrizTabrizIran
  2. 2.Research Institute for Applied Physics and Astronomy, University of TabrizTabrizIran
  3. 3.School of Electrical, Electronic and Computer Engineering, The University of Western AustraliaCrawleyAustralia

Personalised recommendations