Advertisement

Baldovin-Stella stochastic volatility process and Wiener process mixtures

  • P. P. Peirano
  • D. Challet
Regular Article

Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Cont, Quant. Fin. 1, 223 (2001)CrossRefGoogle Scholar
  2. 2.
    J.P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management, 2nd edn. (Cambridge University Press, 2003)Google Scholar
  3. 3.
    T. Bollerslev, R.F. Engle, D.B. Nelson, ARCH Models, in Handbook of Econometrics, edited by R.F. Engle, D.L. McFadden (Elsevier, 1994), pp. 2959–3038Google Scholar
  4. 4.
    R.S. Tsay, Analysis of Financial Time Series (John Wiley & Sons, 2002), Chap. 3Google Scholar
  5. 5.
    M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, 2nd edn. (Springer Verlag, second edition, 2005), Chap. 7, pp. 237–278Google Scholar
  6. 6.
    B. Mandelbrot, A. Fisher, L. Calvet, A Multifractal Model of Asset Returns (Cowles Foundation Discussion Papers 1164, Cowles Foundation, Yale University, 1997)Google Scholar
  7. 7.
    E. Bacry, J. Delour, J.F. Muzy, Physica A 299, 84 (2001)ADSMATHCrossRefGoogle Scholar
  8. 8.
    Z. Eisler, J. Kertész, Physica A 343, 603 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    L. Borland, J.P. Bouchaud, J.F. Muzy, G.O. Zumbach, The Dynamics of Financial Markets – Mandelbrot’s Multifractal Cascades, and beyond, Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management, 2005Google Scholar
  10. 10.
    G.O. Zumbach, M.M. Dacorogna, J.L. Olsen, R.B. Olsen, Int. J. Theor. Appl. Finance 3, 347 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    G.O. Zumbach, Quant. Fin. 4, 70 (2004)Google Scholar
  12. 12.
    L. Borland, J.P. Bouchaud, On a Multi-Timescale Statistical Feedback Model for Volatility Fluctuations, Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management, 2005Google Scholar
  13. 13.
    R. Cont, P. Tankov, Financial Modelling with Jump Processes (Financial Mathematics Series, CRC Press, 2004), Chap. 4Google Scholar
  14. 14.
    P. Carr, H. Geman, D. Madan, M. Yor, Mathematical Finance 17, 31 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    F. Baldovin, A.L. Stella, Phys. Rev. E 75, 020101 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    F. Baldovin, A.L. Stella, Proc. Natl. Acad. Sci. USA 104, 19741 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    F. Baldovin, A.L. Stella, Role of scaling in the statistical modeling of finance, 2008, Based on the Key Note lecture by A.L. Stella at the Conference on Statistical Physics Approaches to Multi-Disciplinary Problems (IIT Guwahati, India, 2008)Google Scholar
  18. 18.
    T. Di Matteo, Quant. Fin. 7, 21 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    A. Andreoli, F. Caravenna, P.D. Pra, G. Posta, Scaling and multiscaling in financial indexes: a simple model, preprint arXiv:1006.0155 (2010)Google Scholar
  20. 20.
    I.M. Sokolov, A.V. Chechkin, J. Klafter, Physica A 336, 245 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    R. Osorio, L. Borland, C. Tsallis, Distributions of High-Frequency Stock Market Observables, in Nonextensive Entropy: Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, 2004), p. 321Google Scholar
  22. 22.
    R. Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2008)Google Scholar
  23. 23.
    C. Vignat, A. Plastino, Phys. Lett. A 365, 370 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    E. Eberlein, U. Keller, Bernoulli 1, 281 (1995)MATHCrossRefGoogle Scholar
  25. 25.
    N.H. Bingham, R. Kiesel, Modelling Asset Returns with Hyperbolic Distributions, in Return Distributions in Finance, edited by J. Knight, S. Satchell (Butterworth-Heinemann, 2001), Chap. 1, pp. 1–20Google Scholar
  26. 26.
    R.B. Nelsen, An Introduction to Copulas, 2nd edn. (Springer Series in Statistics, Springer, 2006)Google Scholar
  27. 27.
    U. Cherubini, E. Luciano, W. Vecchiato, Copula Methods in Finance (Wiley Finance. Wiley, 2004)Google Scholar
  28. 28.
    Y. Malevergne, D. Sornette, Extreme Financial Risks (Springer, 2006)Google Scholar
  29. 29.
    I.J. Schoenberg, Duke Math. J. 9, 96 (1942)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    N.H. Bingham, R. Kiesel, Quant. Fin. 1, 1 (2001)Google Scholar
  31. 31.
    F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 016119 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    P. Weber, F. Wang, I. Vodenska-Chitkushev, S. Havlin, H.E. Stanley, Phys. Rev. E 76, 016109 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    F. Lillo, Eur. Phys. J. B 55, 453 (2007)ADSMATHCrossRefGoogle Scholar
  34. 34.
    K.E. Bassler, J.L. McCauley, G.H. Gunaratne, Proc. Natl. Acad. Sci. USA 104, 17287 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    R. Morales, T. Di Matteo, R. Gramatica, T. Aste, Physica A 391, 3180 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    R.H. Riedi, Multifractal processes, in Long-range Dependence: Theory and Applications, edited by P. Doukhan, G. Oppenheim, M.S. Taqqu (Birkhauser, 2002), pp. 625–716Google Scholar
  37. 37.
    S. Jaffard, SIAM J. Math. Anal. 28, 944 (1997)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    S. Jaffard, SIAM J. Math. Anal. 28, 971 (1997)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    E. Bacry, J. Delour, J.F. Muzy, Phys. Rev. E 64, 26103 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    E. Bacry, A. Kozhemyak, J.F. Muzy, Physica A 370, 119 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Muzy, E. Bacry, A. Kozhemyak, Phys. Rev. E 73, 066114 (2006)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    J.P. Bouchaud, Physica A 263, 415 (1999)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    J.P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B 13, 595 (2000)ADSGoogle Scholar
  44. 44.
    Z.Q. Jiang, W.X. Zhou, Physica A 387, 3605 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    D. Sornette, Phys. Rep. 378, 1 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    D. Sornette, Y. Malevergne, J.F. Muzy, J. Risk 16, 67 (2003)Google Scholar
  47. 47.
    G. Chang, J. Feigenbaum, Quant. Fin. 6, 15 (2006)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    A. Helmstetter, D. Sornette, J.R. Grasso, J. Geophys. Res. 108, 2046 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    J.P. Bouchaud, A. Matacz, M. Potters, Phys. Rev. Lett. 87, 228701 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    P.E. Lynch, G.O. Zumbach, Quant. Fin. 3, 320 (2003)CrossRefGoogle Scholar
  51. 51.
    Z.O. Zumbach, Quant. Fin. 9, 505 (2009)MathSciNetCrossRefGoogle Scholar
  52. 52.
    S. Drozdz, M. Forczek, J. Kwapien, P. Oswiecimka, R. Rak, Physica A 383, 59 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    C.C. Heyde, N.N. Leonenko, Adv. Appl. Probab. 37, 342 (2005)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    L. Borland, Phys. Rev. Lett. 89, 98701 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    M. Vellekoop, H. Nieuwenhuis, Quant. Fin. 7, 563 (2007)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    O.E. Barndorff-Nielsen, N. Shephard, J. Roy. Stat. Soc. B 63, 167 (2001)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    A. Erdélyi, Higher Transcendental Functions (McGraw-Hill Publisher, 1953), Vol. 2Google Scholar
  58. 58.
    S. Hurst, The characteristic function of the Student t -distribution, Technical Report SRR95-044, Austrialian National University, Centre for Mathematics and its Applications (Canberra, 1995)Google Scholar
  59. 59.
    I. Dreier, S. Kotz, Stat. Probab. Lett. 57, 221 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Capital Fund ManagementParisFrance
  2. 2.Chaire de finance quantitative, Laboratoire de mathématiques appliquées aux systèmesÉcole Centrale ParisChâtenay-MalabryFrance
  3. 3.Encelade Capital SASt-SulpiceSwitzerland

Personalised recommendations