Skip to main content
Log in

Baldovin-Stella stochastic volatility process and Wiener process mixtures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cont, Quant. Fin. 1, 223 (2001)

    Article  Google Scholar 

  2. J.P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management, 2nd edn. (Cambridge University Press, 2003)

  3. T. Bollerslev, R.F. Engle, D.B. Nelson, ARCH Models, in Handbook of Econometrics, edited by R.F. Engle, D.L. McFadden (Elsevier, 1994), pp. 2959–3038

  4. R.S. Tsay, Analysis of Financial Time Series (John Wiley & Sons, 2002), Chap. 3

  5. M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, 2nd edn. (Springer Verlag, second edition, 2005), Chap. 7, pp. 237–278

  6. B. Mandelbrot, A. Fisher, L. Calvet, A Multifractal Model of Asset Returns (Cowles Foundation Discussion Papers 1164, Cowles Foundation, Yale University, 1997)

  7. E. Bacry, J. Delour, J.F. Muzy, Physica A 299, 84 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Z. Eisler, J. Kertész, Physica A 343, 603 (2004)

    Article  ADS  Google Scholar 

  9. L. Borland, J.P. Bouchaud, J.F. Muzy, G.O. Zumbach, The Dynamics of Financial Markets – Mandelbrot’s Multifractal Cascades, and beyond, Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management, 2005

  10. G.O. Zumbach, M.M. Dacorogna, J.L. Olsen, R.B. Olsen, Int. J. Theor. Appl. Finance 3, 347 (2000)

    Article  MATH  Google Scholar 

  11. G.O. Zumbach, Quant. Fin. 4, 70 (2004)

    Google Scholar 

  12. L. Borland, J.P. Bouchaud, On a Multi-Timescale Statistical Feedback Model for Volatility Fluctuations, Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management, 2005

  13. R. Cont, P. Tankov, Financial Modelling with Jump Processes (Financial Mathematics Series, CRC Press, 2004), Chap. 4

  14. P. Carr, H. Geman, D. Madan, M. Yor, Mathematical Finance 17, 31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Baldovin, A.L. Stella, Phys. Rev. E 75, 020101 (2007)

    Article  ADS  Google Scholar 

  16. F. Baldovin, A.L. Stella, Proc. Natl. Acad. Sci. USA 104, 19741 (2007)

    Article  ADS  Google Scholar 

  17. F. Baldovin, A.L. Stella, Role of scaling in the statistical modeling of finance, 2008, Based on the Key Note lecture by A.L. Stella at the Conference on Statistical Physics Approaches to Multi-Disciplinary Problems (IIT Guwahati, India, 2008)

  18. T. Di Matteo, Quant. Fin. 7, 21 (2007)

    Article  MATH  Google Scholar 

  19. A. Andreoli, F. Caravenna, P.D. Pra, G. Posta, Scaling and multiscaling in financial indexes: a simple model, preprint arXiv:1006.0155 (2010)

  20. I.M. Sokolov, A.V. Chechkin, J. Klafter, Physica A 336, 245 (2004)

    Article  ADS  Google Scholar 

  21. R. Osorio, L. Borland, C. Tsallis, Distributions of High-Frequency Stock Market Observables, in Nonextensive Entropy: Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, 2004), p. 321

  22. R. Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2008)

  23. C. Vignat, A. Plastino, Phys. Lett. A 365, 370 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E. Eberlein, U. Keller, Bernoulli 1, 281 (1995)

    Article  MATH  Google Scholar 

  25. N.H. Bingham, R. Kiesel, Modelling Asset Returns with Hyperbolic Distributions, in Return Distributions in Finance, edited by J. Knight, S. Satchell (Butterworth-Heinemann, 2001), Chap. 1, pp. 1–20

  26. R.B. Nelsen, An Introduction to Copulas, 2nd edn. (Springer Series in Statistics, Springer, 2006)

  27. U. Cherubini, E. Luciano, W. Vecchiato, Copula Methods in Finance (Wiley Finance. Wiley, 2004)

  28. Y. Malevergne, D. Sornette, Extreme Financial Risks (Springer, 2006)

  29. I.J. Schoenberg, Duke Math. J. 9, 96 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  30. N.H. Bingham, R. Kiesel, Quant. Fin. 1, 1 (2001)

    Google Scholar 

  31. F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 016119 (2003)

    Article  ADS  Google Scholar 

  32. P. Weber, F. Wang, I. Vodenska-Chitkushev, S. Havlin, H.E. Stanley, Phys. Rev. E 76, 016109 (2007)

    Article  ADS  Google Scholar 

  33. F. Lillo, Eur. Phys. J. B 55, 453 (2007)

    Article  ADS  MATH  Google Scholar 

  34. K.E. Bassler, J.L. McCauley, G.H. Gunaratne, Proc. Natl. Acad. Sci. USA 104, 17287 (2007)

    Article  ADS  Google Scholar 

  35. R. Morales, T. Di Matteo, R. Gramatica, T. Aste, Physica A 391, 3180 (2012)

    Article  ADS  Google Scholar 

  36. R.H. Riedi, Multifractal processes, in Long-range Dependence: Theory and Applications, edited by P. Doukhan, G. Oppenheim, M.S. Taqqu (Birkhauser, 2002), pp. 625–716

  37. S. Jaffard, SIAM J. Math. Anal. 28, 944 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Jaffard, SIAM J. Math. Anal. 28, 971 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Bacry, J. Delour, J.F. Muzy, Phys. Rev. E 64, 26103 (2001)

    Article  ADS  Google Scholar 

  40. E. Bacry, A. Kozhemyak, J.F. Muzy, Physica A 370, 119 (2006)

    Article  ADS  Google Scholar 

  41. J.F. Muzy, E. Bacry, A. Kozhemyak, Phys. Rev. E 73, 066114 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.P. Bouchaud, Physica A 263, 415 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  43. J.P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B 13, 595 (2000)

    ADS  Google Scholar 

  44. Z.Q. Jiang, W.X. Zhou, Physica A 387, 3605 (2008)

    Article  ADS  Google Scholar 

  45. D. Sornette, Phys. Rep. 378, 1 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. D. Sornette, Y. Malevergne, J.F. Muzy, J. Risk 16, 67 (2003)

    Google Scholar 

  47. G. Chang, J. Feigenbaum, Quant. Fin. 6, 15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Helmstetter, D. Sornette, J.R. Grasso, J. Geophys. Res. 108, 2046 (2003)

    Article  ADS  Google Scholar 

  49. J.P. Bouchaud, A. Matacz, M. Potters, Phys. Rev. Lett. 87, 228701 (2001)

    Article  ADS  Google Scholar 

  50. P.E. Lynch, G.O. Zumbach, Quant. Fin. 3, 320 (2003)

    Article  Google Scholar 

  51. Z.O. Zumbach, Quant. Fin. 9, 505 (2009)

    Article  MathSciNet  Google Scholar 

  52. S. Drozdz, M. Forczek, J. Kwapien, P. Oswiecimka, R. Rak, Physica A 383, 59 (2007)

    Article  ADS  Google Scholar 

  53. C.C. Heyde, N.N. Leonenko, Adv. Appl. Probab. 37, 342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Borland, Phys. Rev. Lett. 89, 98701 (2002)

    Article  ADS  Google Scholar 

  55. M. Vellekoop, H. Nieuwenhuis, Quant. Fin. 7, 563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. O.E. Barndorff-Nielsen, N. Shephard, J. Roy. Stat. Soc. B 63, 167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Erdélyi, Higher Transcendental Functions (McGraw-Hill Publisher, 1953), Vol. 2

  58. S. Hurst, The characteristic function of the Student t -distribution, Technical Report SRR95-044, Austrialian National University, Centre for Mathematics and its Applications (Canberra, 1995)

  59. I. Dreier, S. Kotz, Stat. Probab. Lett. 57, 221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Challet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peirano, P.P., Challet, D. Baldovin-Stella stochastic volatility process and Wiener process mixtures. Eur. Phys. J. B 85, 276 (2012). https://doi.org/10.1140/epjb/e2012-30134-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30134-y

Keywords

Navigation