A detection method of symmetry restoration process of attractor merging crisis

  • T. Mizuguchi
  • M. Yomosa
  • N. Fujiwara
  • M.U. Kobayashi
Regular Article
  • 96 Downloads

Abstract

We propose a method to detect the approach to a specific unstable symmetric mediating solution, which characterises the symmetry restoration process close to a bifurcation point of an attractor merging crisis. This method captures a temporary restoration of the symmetry, and it does not require neither the exact parameter value of the bifurcation point nor the mediating solution. We study a forced XY model as an example and show that this method figures out the singularity caused by the approach from the asymmetric side of the crisis. An analysis of the repulsively coupled Stuart Landau system suggests the feasibility of this method even when the mediating solution is a symmetric torus.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C. Grebogi, E. Ott, J.A. Yorke, Physica D 7, 181 (1983)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    C. Grebogi, E. Ott, F. Romeiras, J.A. Yorke, Phys. Rev. A 36, 5365 (1987) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. Heagy, W.L.J. Ditto, Nonlinear Science 1, 423 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    A.C.-L. Chian, E.L. Rempel, E.E. Macau, R.R. Rosa, F. Christiansen, Phys. Rev. E 65, R035203 (2002) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    E.L. Rempel, A.C.-L. Chian, Phys. Lett. A 71, 104 (2003)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E.L. Rempel, A.C.-L. Chian, Phys. Rev. E 71, 016203 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    K. Ito, Y. Nishiura, Phys. Rev. E 77, 036224 (2008) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    H. Fujisaka, S. Grossmann, Z. Phys. B 48, 261 (1982)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    H. Ishii, H. Fujisaka, M. Inoue, Phys. Lett. A 116, 257 (1986) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M.U. Kobayashi, T. Mizuguchi, Phys. Rev. E 73, 016212 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    N. Fujiwara, T. Kobayashi, H. Fujisaka, Phys. Rev. E 75, 026202 (2007) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Y. Morita, N. Fujiwara, M.U. Kobayashi, T. Mizuguchi, Chaos 20, 013126 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Dover Publications, New York, 2003)Google Scholar
  14. 14.
    H.E. Nusse, J.A. Yorke, Physica D 36, 137 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Y. Nishiura, T. Teramoto, K. Ueda, Chaos 13, 962 (2007)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    V. López, P. Boyland, M.T. Heath, R.D. Moser, SIAM J. Appl. Dyn. Syst. 4, 1042 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. Mizuguchi
    • 1
    • 2
  • M. Yomosa
    • 1
  • N. Fujiwara
    • 3
    • 4
  • M.U. Kobayashi
    • 3
    • 4
  1. 1.Department of Mathematical SciencesOsaka Prefecture UniversitySakaiJapan
  2. 2.PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho KawaguchiSaitamaJapan
  3. 3.FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, The University of TokyoTokyoJapan
  4. 4.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations