Advertisement

Oscillatory nonequilibrium Nambu systems: the canonical-dissipative Yamaleev oscillator

  • S. Mongkolsakulvong
  • P. Chaikhan
  • T. D. Frank
Regular Article

Abstract

We study the emergence of oscillatory self-sustained behavior in a nonequilibrium Nambu system that features an exchange between different kinetical and potential energy forms. To this end, we study the Yamaleev oscillator in a canonical-dissipative framework. The bifurcation diagram of the nonequilibrium Yamaleev oscillator is derived and different bifurcation routes that are leading to limit cycle dynamics and involve pitchfork and Hopf bifurcations are discussed. Finally, an analytical expression for the probability density of the stochastic nonequilibrium oscillator is derived and it is shown that the shape of the density function is consistent with the oscillator properties in the deterministic case.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Y. Nambu, Phys. Rev. D 7, 2405 (1973)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S.A. Pandit, A.D. Gangal, J. Phys. A 31, 2899 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    A.R. Plastino, A. Plastino, L.R. da Silva, M. Casas, Physica A 271, 343 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Roston, A.R. Plastino, M. Casas, A. Plastino, L.R. da Silva, Eur. Phys. J. B 48, 87 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W.H. Steeb, N. Euler, Nuovo Cim. B 106, 263 (1991) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. Tegmen, Czech. J. Phys. 54, 749 (2004)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D. Baleanu, Proc. Inst. Math. NAS of Ukraine 50, 611 (2004)MathSciNetGoogle Scholar
  8. 8.
    T.L. Curtright, C. Zachos, New J. Phys. 4, 83.1 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T.L. Curtright, C. Zachos, Phys. Rev. D 68, 085001 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    C. Zachos, Phys. Lett. B 570, 82 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    S. Codriansky, C.A.G. Bernardo, A. Aglaee, F. Carrillo, J. Castellanos, G. Pereira, J. Perez, J. Phys. A 27, 2565 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Hirayama, Phys. Rev. D 16, 530 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    A.R. Plastino, A. Plastino, Physica A 232, 458 (1996) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    N.G. Pletnev, Siberian Electronic Mathematical Reports 6, 272 (2009)MathSciNetGoogle Scholar
  15. 15.
    R.M. Yamaleev, Ann. Phys. 292, 157 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    T.D. Frank, J. Biol. Phys. 37, 375 (2011)CrossRefGoogle Scholar
  17. 17.
    T.D. Frank, Nambu brackt formulation of nonlinear biochemical reactions beyond elementary mass action kinetics, J. Nonlin. Math. Phys., in pressGoogle Scholar
  18. 18.
    R.M. Yamaleev, Ann. Phys. 277, 1 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    R.M. Yamaleev, Ann. Phys. 285, 141 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    C. Gonera, Y. Nuktu, Phys. Lett. A 285, 301 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    A. Tegmen, A. Vercin, Int. J. Mod. Phys. B 19, 393 (2004)MathSciNetADSMATHGoogle Scholar
  22. 22.
    F. Schweitzer, Brownian agents and active particles (Springer, Berlin, 2003)Google Scholar
  23. 23.
    H. Haken, Z. Phys. 263, 267 (1973) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    M. Hongler, D.M. Ryter, Z. Phys. B 31, 333 (1978)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    W. Ebeling, I.M. Sokolov, Statistical thermodynamics and stochastic theory of nonequilibrium systems (World Scientific, Singapore, 2004)Google Scholar
  26. 26.
    U. Erdmann, W. Ebeling, A. Mikhailov, Phys. Rev. E 71, 051904 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    W. Ebeling, L. Schimansky-Geier, Eur. Phys. J. Special Top. 157, 17 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    W. Ebeling, F. Schweitzer, B. Tilch, Bio. Syst. 49, 17 (1999)Google Scholar
  29. 29.
    B. Lindner, E.M. Nicola, Eur. Phys. J. Special Top. 157, 43 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    A. Czirok, A.L. Barabasi, T. Vicsek, Phys. Rev. Lett. 82, 209 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    J.W. Rayleigh, Theory of sound, 1st edn. (Dover, New York, 1945), published 1894Google Scholar
  32. 32.
    T.D. Frank, Eur. Phys. J. B 74, 195 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    T.D. Frank, Phys. Lett. A 374, 3136 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    A. Molgado, A. Rodriguez, J. Nonlin. Math. Phys. 14, 534 (2007)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    H. Risken, The Fokker-Planck equation – Methods of solution and applications (Springer, Berlin, 1989)Google Scholar
  36. 36.
    A.L. Harvey, Phys. Rev. D 6, 1474 (1972)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Mongkolsakulvong
    • 1
  • P. Chaikhan
    • 1
  • T. D. Frank
    • 2
    • 3
    • 4
  1. 1.Faculty of Science, Department of PhysicsKasetsart UniversityBangkokThailand
  2. 2.Center for the Ecological Study of Perception and Action, Department of PsychologyUniversity of ConnecticutStorrsUSA
  3. 3.Systems Biology IrelandUniversity College DublinDublinIreland
  4. 4.UCD School of PhysicsUniversity College DublinDublinIreland

Personalised recommendations