Advertisement

The European Physical Journal B

, Volume 83, Issue 4, pp 437–443 | Cite as

Sulphur overlayers on Ir(100) and its effect on the adsorption of CO: a DFT study

  • S. H. Ma
  • Z. Y. Jiao
  • X. Q. Dai
  • Z. X. Yang
Regular Article Solid State and Materials

Abstract

Ordered sulphur overlayers adsorbed on Ir(100) surface are studied with different coverage ranging from 0.11 to 1.0 ML. Calculations indicate that atomic S adsorbs favourably in hollow sites, forming strong covalent bonds with the substrate surface and the adsorption energy is nearly unchanged at lower coverages (θ S ≤ 0.50 ML). In good agreement with experimental observations, the p(2 × 2)-S and c(2 × 2)-S are predicted to be the most stable overlayers. The obtained surface electronic structure modifications induced by sulphur adsorption are coverage-dependent and the results are in accordance with the rectangular band and the Hammer-Nørskov models. Moreover, the effect of sulphur on the adsorption of CO is discussed in the p(2 × 2)−(S + CO) overlayer on Ir(100).

Keywords

Adsorption Energy Density Functional Theory Study Hollow Site Rectangular Band Strong Covalent Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Rodriguez, Prog. Surf. Sci. 81, 141 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    M. May, S. Gonzalez, F. Illas, Surf. Sci. 602, 906 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Alfonso, Surf. Sci. 596, 229 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Z.Y. Yang, R.Q. Wu, J.A. Rodriguez, Phys. Rev. B 65, 155409 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Rodriguez, J. Hrbek, M. Kuhn, T. Jirsak, S. Chaturvedi, A. Maiti, J. Chem. Phys. 113, 11284 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Rodriguez, S. Chaturvedi, M. Kuhn, J. Chem. Phys. 108, 3064 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    S.H. Ma, Z.Y. Jiao, Z.X. Yang, Surf. Sci. 604, 817 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Lerotholi, G. Held, D.A. King, Surf. Sci. 600, 880 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Ma, X.T. Zu, H.Y. Xiao, J.L. Nie, Chem. Phys. Lett. 441, 53 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse, J. Fürthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) ADSCrossRefGoogle Scholar
  15. 15.
    S.D. Miller, J.R. Kitchin, Surf. Sci. 603, 794 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    J.R. Kitchin, Phys. Rev. B 79, 205412 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    B. Hammer, M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    P. Liu, J.K. Nørskov, Phys. Chem. Chem. Phys. 3, 3814 (2001)CrossRefGoogle Scholar
  19. 19.
    I.A. Erikat, B.A. Hamad, J.M. Khalifeh, Eur. Phys. J. B 67, 35 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S.H. Ma, Z.Y. Jiao, T.X. Wang, X.T. Zu, J. Phys. Chem. C 113, 16210 (2009) CrossRefGoogle Scholar
  21. 21.
    D. Curulla-Ferré, A. Govender, T.C. Bromfield, J.W. (Hans) Niemantsverdriet, J. Phys. Chem. B 110, 13897 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. H. Ma
    • 1
  • Z. Y. Jiao
    • 1
  • X. Q. Dai
    • 1
  • Z. X. Yang
    • 1
  1. 1.College of Physics and Information EngineeringHenan Normal UniversityHenanP.R. China

Personalised recommendations