The Lehman Brothers effect and bankruptcy cascades

Interdisciplinary Physics

Abstract

Inspired by the bankruptcy of Lehman Brothers and its consequences on the global financial system, we develop a simple model in which the Lehman default event is quantified as having an almost immediate effect in worsening the credit worthiness of all financial institutions in the economic network. In our stylized description, all properties of a given firm are captured by its effective credit rating, which follows a simple dynamics of co-evolution with the credit ratings of the other firms in our economic network. The dynamics resembles the evolution of Potts spin-glass with external global field corresponding to a panic effect in the economy. The existence of a global phase transition, between paramagnetic and ferromagnetic phases, explains the large susceptibility of the system to negative shocks. We show that bailing out the first few defaulting firms does not solve the problem, but does have the effect of alleviating considerably the global shock, as measured by the fraction of firms that are not defaulting as a consequence. This beneficial effect is the counterpart of the large vulnerability of the system of coupled firms, which are both the direct consequences of the collective self-organized endogenous behaviors of the credit ratings of the firms in our economic network.

Keywords

Credit Risk Credit Rating Hedge Fund Paramagnetic Phase Credit Rating Agency 

References

  1. 1.
    K. Giesecke, J. Bank. Financ. 28, 1521 (2004) CrossRefGoogle Scholar
  2. 2.
    L. Eisenberg, T.H. Noe, Manag. Sci. 47, 236 (2001) CrossRefMATHGoogle Scholar
  3. 3.
    S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, J.E. Stiglitz, J. Econ. Dyn. Control 31, 2061 (2007) MATHCrossRefGoogle Scholar
  4. 4.
    D. Delli Gatti, M. Gallegati, B. Greenwald, A. Russo, J.E. Stiglitz, Financially constrained fluctuations in an evolving network economy, NBER Working Paper No. 14112, http://www.nber.org/papers/w14112.pdf, 2008
  5. 5.
    S. Azizpour, K. Giesecke, J. Econ. Dyn. Control 35, 1340 (2011) CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Sakata, M. Hisakado, S. Mori, J. Phys. Soc. Jpn 76, 054801 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Ikeda, Y. Fujiwara, W. Souma, H. Aoyama, H. Iyetomi, Agent Simulation of Chain Bankruptcy, http://arxiv.org/abs/0709.4355 (2007)
  8. 8.
    J. Lorenz, S. Battiston, F. Schweitzer, Eur. Phys. J. B 71, 441 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    P. Ormerod, R. Colbaugh, J. Artif. Soc. Soc. Simultat. 9, 9 (2007) Google Scholar
  10. 10.
    R. Schafer, M. Sjolin, A. Sundin, M. Wolanski, T. Guhr, Physica A 383, 533 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    P. Neu, R. Kühn, Physica A 342, 639 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    J.P.L. Hatchett, R. Kühn, Quant. Finance 9, 373 (2009) MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Anand, R. Kühn, Phys. Rev. E 75, 016111 (2007) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Khandani, A.W. Lo, J. Invest. Man. 5, 5 (2007) Google Scholar
  15. 15.
    P. Sieczka, J.A. Holyst, Eur. Phys. J. B 71, 461 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    R. Kühn, P. Neu, J. Phys. A Math. Theor. 41, 324015 (2008) CrossRefGoogle Scholar
  17. 17.
    L. Brand, R. Bahar, Ratings Performance 2000, Default, Transition, Recovery, and Spreads, Special Report, Standard & Poor’s, 2001 Google Scholar
  18. 18.
    F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Science 325, 422 (2009) MathSciNetADSMATHGoogle Scholar
  19. 19.
    F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, D.R. White, Adv. Compl. Syst. 12, 407 (2009) MathSciNetCrossRefGoogle Scholar
  20. 20.
    A.W. Lo, Hedge Funds: An Analytic Perspective (Princeton University Press, Princeton, New Jersay, 2008) Google Scholar
  21. 21.
    P. Krugman, The Return of Depression Economics and the Crisis of 2008 (Allen Lane, 2008) Google Scholar
  22. 22.
    I. Goldstein, The Economic Journal 115, 368 (2005) CrossRefGoogle Scholar
  23. 23.
    D. Ariely, Predictably Irrational: The Hidden Forces That Shape Our Decisions (HarperCollins, 2008) Google Scholar
  24. 24.
    D. Sornette, R. Woodard, Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis, to appear in the Proceedings of APFA7, Applications of Physics in Financial Analysis, New Approaches to the Analysis of Large-Scale Business and Economic Data, edited by Misako Takayasu, Tsutomu Watanabe, Hideki Takayasu (Springer, 2010), http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1407608
  25. 25.
    D. McFadden, Conditional Logit Analysis and Qualitative Choice behavior, in Frontiers in Econometrics, edited by P. Zarembka (New York, Academic Press, 1974) Google Scholar
  26. 26.
    D. McFadden, Modelling the Choice of Residential Location, in Spatial Interaction Theory and Planning Models, edited by A. Karlqvist et al. (New York, North-Holland Publishing Co., 1978) Google Scholar
  27. 27.
    J. Molins, R. Vives, Long range Ising model for credit risk modeling, AIP Conference Proceedings (Institute of Physics, 2005), Vol. 779, pp. 156–161, http://arxiv.org/abs/cond-mat/0401378
  28. 28.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    M. Gabay, G. Toulouse, Phys. Rev. Lett. 47, 201 (1981) ADSCrossRefGoogle Scholar
  30. 30.
    H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford University Press, New York, 2001) Google Scholar
  31. 31.
    D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975) ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Aravind, Am. J. Phys. 55, 437 (1987) ADSCrossRefGoogle Scholar
  33. 33.
    M. Consoli, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000) ADSGoogle Scholar
  34. 34.
    J.R. Drugowich de Felicio, O. Hipolito, Am. J. Phys. 53, 690 (1985) ADSCrossRefGoogle Scholar
  35. 35.
    N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Advanced Book Program (Addison-Wesley, Reading, MA, 1992) Google Scholar
  36. 36.
    J. Sivardiere, Am. J. Phys. 51, 1016 (1983) ADSCrossRefGoogle Scholar
  37. 37.
    J. Sivardiere, Am. J. Phys. 65, 567 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge), pp. 1995–1996 Google Scholar
  39. 39.
    D. Sornette, Physica A 284, 355 (2000) ADSCrossRefGoogle Scholar
  40. 40.
    D. Sornette, Critical Phenomena in Natural Sciences, (Chaos, Fractals, Self-organization and Disorder: Concepts and Tools), 2nd edn. (Springer Series in Synergetics, Heidelberg, 2006) Google Scholar
  41. 41.
    D. Sornette, International Journal of Terraspace Science and Engineering 2, 1 (2009) Google Scholar
  42. 42.
    M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, G. Sugihara, Nature 461, 53 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    D. Sornette, Predictability of catastrophic events: material rupture, earthquakes, turbulence, financial crashes and human birth, Proceedings of the National Academy of Sciences USA, 99 SUPP1 (2002), pp. 2522–2529 Google Scholar
  44. 44.
    D. Sornette, M. Fedorovsky, S. Riemann, H. Woodard, R. Woodard, W.-X. Zhou, The Financial Crisis Observatory, The Financial Bubble Experiment: advanced diagnostics and forecasts of bubble terminations (2009), http://arxiv.org/abs/0911.0454
  45. 45.
    S. Johnson, The Economic Crisis and the Crisis in Economics user-pic, http://tpmcafe.talkingpointsmemo.com/2009/01/06/the_economic_crisis_and_the_crisis_in_economics/ (2009)

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of TechnologyWarsawPoland
  2. 2.Department of ManagementZurichSwitzerland
  3. 3.Swiss Finance Institute, c/o University of GenevaGeneva 4Switzerland

Personalised recommendations