Advertisement

The European Physical Journal B

, Volume 79, Issue 3, pp 335–340 | Cite as

Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons

Article

Abstract

The effects of nitrogen substitutional doping in the Stone-Wales (SW) defect on the electronic transport properties of zigzag-edged graphene nanoribbon (ZGNR) are studied by using density functional theory combined with nonequilibrium Green’s function. The transformation energies of all doped nanostructures are evaluated in terms of total energies and, furthermore, it is found that the impurity placed on the center of the ribbon is the most energetically favorable site. Nitrogen substitution gives rise to a complete electron backscattering region in doped configurations, and the location of which is dependent on the doping sites. The electronic and transport properties of doped ZGNRs are discussed. Our results suggest that modification of the electronic properties of ZGNR with topological defects by substitutional doping might not be significant for some doping sites.

Keywords

Edge State Topological Defect Transformation Energy Electronic Transport Property Graphene Nanoribbons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, S.C. Curl, R.E. Smalley, Nature 318, 162 (1985) CrossRefADSGoogle Scholar
  2. 2.
    S. Iijima, Nature 354, 56 (1991) CrossRefADSGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) CrossRefADSGoogle Scholar
  4. 4.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) CrossRefADSGoogle Scholar
  5. 5.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) CrossRefADSGoogle Scholar
  6. 6.
    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007) CrossRefADSGoogle Scholar
  7. 7.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008) CrossRefADSGoogle Scholar
  8. 8.
    M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn 65, 1920 (1996) CrossRefADSGoogle Scholar
  9. 9.
    Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999) CrossRefADSGoogle Scholar
  10. 10.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005) CrossRefADSGoogle Scholar
  11. 11.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010) CrossRefADSGoogle Scholar
  12. 12.
    M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007) CrossRefADSGoogle Scholar
  13. 13.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) CrossRefADSGoogle Scholar
  14. 14.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006) CrossRefADSGoogle Scholar
  16. 16.
    J.M. Carlsson, M. Scheffler, Phys. Rev. Lett. 96, 046806 (2006) CrossRefADSGoogle Scholar
  17. 17.
    A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763, 293 (2007) MATHCrossRefADSGoogle Scholar
  18. 18.
    S.M. Choi, S.H. Jhi, Phys. Rev. Lett. 101, 266105 (2008) CrossRefADSGoogle Scholar
  19. 19.
    B. Biel, X. Blase, F. Triozon, S. Roche, Phys. Rev. Lett. 102, 096803 (2009) CrossRefADSGoogle Scholar
  20. 20.
    G. Cantele, Y.-S. Lee, D. Ninno, N. Marzari, Nano Lett. 9, 3425 (2009) CrossRefADSGoogle Scholar
  21. 21.
    A. López-Bezanilla, F. Triozon, S. Roche, Nano Lett. 9, 2537 (2009) CrossRefADSGoogle Scholar
  22. 22.
    F. Cervantes-Sodi, G. Csányi, S. Piscanec, A.C. Ferrari, Phys. Rev. B 77, 165427 (2008) CrossRefADSGoogle Scholar
  23. 23.
    B. Wang, J. Wang, H. Guo, Phys. Rev. B 79, 165417 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Y. Park, G. Kim, Y.H. Lee, Appl. Phys. Lett. 92, 083108 (2008) CrossRefADSGoogle Scholar
  25. 25.
    J.Y. Yan, P. Zhang, B. Sun, H.Z. Lu, Z.G. Wang, S.Q. Duan, X.G. Zhao, Phys. Rev. B 79, 115403 (2009) CrossRefADSGoogle Scholar
  26. 26.
    H. Şahin, R.T. Senger, Phys. Rev. B 78, 205423 (2008) CrossRefADSGoogle Scholar
  27. 27.
    M. Topsakal, E. Aktürk, H. Sevinçli, S. Ciraci, Phys. Rev. B 78, 235435 (2008) CrossRefADSGoogle Scholar
  28. 28.
    N.M.R. Peres, F.D. Klironomos, S.W. Tsai, J.R. Santos, J.M.B. Lopes dos Santos, A.H. Castro Neto, Eur. Phys. Lett. 80, 67007 (2007) CrossRefADSGoogle Scholar
  29. 29.
    W. Long, Q.F. Sun, J. Wang, Phys. Rev. Lett. 101, 166806 (2008) CrossRefADSGoogle Scholar
  30. 30.
    A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870 (2004) CrossRefADSGoogle Scholar
  31. 31.
    E.J. Kan, Z.Y. Li, J.L. Yang, J.G. Hou, Appl. Phys. Lett. 91, 243116 (2007) CrossRefADSGoogle Scholar
  32. 32.
    J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Nano Lett. 8, 3582 (2008) CrossRefADSGoogle Scholar
  33. 33.
    Zhiyong Wang, Huifang Hu, Hui Zeng, Appl. Phys. Lett. 96, 243110 (2010) CrossRefADSGoogle Scholar
  34. 34.
    Y. Ren, K.-Q. Chen, J. Appl. Phys. 107, 044514 (2010) CrossRefADSGoogle Scholar
  35. 35.
    X.L. Li, X.R. Wang, L. Zhang, S. Lee, H.J. Dai, Science 319, 1229 (2008) CrossRefADSGoogle Scholar
  36. 36.
    Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, Gui Yu, Nano Lett. 9, 1752 (2009) CrossRefADSGoogle Scholar
  37. 37.
    Jianwei Wei, Huifang Hu, Hui Zeng, Zhiyong Wang, Lei Wang, Appl. Phys. Lett. 91, 092121 (2007) CrossRefADSGoogle Scholar
  38. 38.
    C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. 1, 243 (2009) CrossRefGoogle Scholar
  39. 39.
    T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007) CrossRefADSGoogle Scholar
  40. 40.
    B. Biel, F. Triozon, X. Blase, S. Roche, Nano Lett. 9, 2725 (2009) CrossRefADSGoogle Scholar
  41. 41.
    Huaixiu Zheng, Walter Duley, Phys. Rev. B 78, 155118 (2008) CrossRefGoogle Scholar
  42. 42.
    S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, Carbon 46, 537 (2008) CrossRefGoogle Scholar
  43. 43.
    P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996) CrossRefADSGoogle Scholar
  44. 44.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys: Condens. Matter 14, 2745 (2002) CrossRefADSGoogle Scholar
  45. 45.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  46. 46.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1993) CrossRefADSGoogle Scholar
  47. 47.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005) Google Scholar
  49. 49.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001) CrossRefADSGoogle Scholar
  50. 50.
    M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) CrossRefADSGoogle Scholar
  51. 51.
    H. Zeng, J.-P. Leburton, Y. Xu, J.-W. Wei, Defect Symmetry Influence on Electronic Transport of Zigzag Nanoribbons, Nanoscale Res. Lett. (in press) Google Scholar
  52. 52.
    D.E. Jiang, B.G. Sumpter, S. Dai, J. Chem. Phys. 126, 134701 (2007) CrossRefADSGoogle Scholar
  53. 53.
    D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007) CrossRefADSGoogle Scholar
  54. 54.
    Zuanyi Li, Haiyun Qian, Jian Wu, Bing-Lin Gu, Wenhui Duan, Phys. Rev. Lett. 100, 206802 (2008) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.College of Physical Science and Technology, Yangtze UniversityHubeiP.R. China
  2. 2.School of Mathematics and Physics, Chongqing Institute of TechnologyChongqingP.R. China
  3. 3.College of Physics and Mircoelectronic Science, Hunan UniversityHunanP.R. China

Personalised recommendations