Skip to main content
Log in

Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of nitrogen substitutional doping in the Stone-Wales (SW) defect on the electronic transport properties of zigzag-edged graphene nanoribbon (ZGNR) are studied by using density functional theory combined with nonequilibrium Green’s function. The transformation energies of all doped nanostructures are evaluated in terms of total energies and, furthermore, it is found that the impurity placed on the center of the ribbon is the most energetically favorable site. Nitrogen substitution gives rise to a complete electron backscattering region in doped configurations, and the location of which is dependent on the doping sites. The electronic and transport properties of doped ZGNRs are discussed. Our results suggest that modification of the electronic properties of ZGNR with topological defects by substitutional doping might not be significant for some doping sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, S.C. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  6. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007)

    Article  ADS  Google Scholar 

  7. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  8. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn 65, 1920 (1996)

    Article  ADS  Google Scholar 

  9. Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  ADS  Google Scholar 

  11. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)

    Article  ADS  Google Scholar 

  12. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  13. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  14. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  15. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  16. J.M. Carlsson, M. Scheffler, Phys. Rev. Lett. 96, 046806 (2006)

    Article  ADS  Google Scholar 

  17. A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763, 293 (2007)

    Article  MATH  ADS  Google Scholar 

  18. S.M. Choi, S.H. Jhi, Phys. Rev. Lett. 101, 266105 (2008)

    Article  ADS  Google Scholar 

  19. B. Biel, X. Blase, F. Triozon, S. Roche, Phys. Rev. Lett. 102, 096803 (2009)

    Article  ADS  Google Scholar 

  20. G. Cantele, Y.-S. Lee, D. Ninno, N. Marzari, Nano Lett. 9, 3425 (2009)

    Article  ADS  Google Scholar 

  21. A. López-Bezanilla, F. Triozon, S. Roche, Nano Lett. 9, 2537 (2009)

    Article  ADS  Google Scholar 

  22. F. Cervantes-Sodi, G. Csányi, S. Piscanec, A.C. Ferrari, Phys. Rev. B 77, 165427 (2008)

    Article  ADS  Google Scholar 

  23. B. Wang, J. Wang, H. Guo, Phys. Rev. B 79, 165417 (2009)

    Article  ADS  Google Scholar 

  24. Y. Park, G. Kim, Y.H. Lee, Appl. Phys. Lett. 92, 083108 (2008)

    Article  ADS  Google Scholar 

  25. J.Y. Yan, P. Zhang, B. Sun, H.Z. Lu, Z.G. Wang, S.Q. Duan, X.G. Zhao, Phys. Rev. B 79, 115403 (2009)

    Article  ADS  Google Scholar 

  26. H. Şahin, R.T. Senger, Phys. Rev. B 78, 205423 (2008)

    Article  ADS  Google Scholar 

  27. M. Topsakal, E. Aktürk, H. Sevinçli, S. Ciraci, Phys. Rev. B 78, 235435 (2008)

    Article  ADS  Google Scholar 

  28. N.M.R. Peres, F.D. Klironomos, S.W. Tsai, J.R. Santos, J.M.B. Lopes dos Santos, A.H. Castro Neto, Eur. Phys. Lett. 80, 67007 (2007)

    Article  ADS  Google Scholar 

  29. W. Long, Q.F. Sun, J. Wang, Phys. Rev. Lett. 101, 166806 (2008)

    Article  ADS  Google Scholar 

  30. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870 (2004)

    Article  ADS  Google Scholar 

  31. E.J. Kan, Z.Y. Li, J.L. Yang, J.G. Hou, Appl. Phys. Lett. 91, 243116 (2007)

    Article  ADS  Google Scholar 

  32. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Nano Lett. 8, 3582 (2008)

    Article  ADS  Google Scholar 

  33. Zhiyong Wang, Huifang Hu, Hui Zeng, Appl. Phys. Lett. 96, 243110 (2010)

    Article  ADS  Google Scholar 

  34. Y. Ren, K.-Q. Chen, J. Appl. Phys. 107, 044514 (2010)

    Article  ADS  Google Scholar 

  35. X.L. Li, X.R. Wang, L. Zhang, S. Lee, H.J. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  36. Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, Gui Yu, Nano Lett. 9, 1752 (2009)

    Article  ADS  Google Scholar 

  37. Jianwei Wei, Huifang Hu, Hui Zeng, Zhiyong Wang, Lei Wang, Appl. Phys. Lett. 91, 092121 (2007)

    Article  ADS  Google Scholar 

  38. C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. 1, 243 (2009)

    Article  Google Scholar 

  39. T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007)

    Article  ADS  Google Scholar 

  40. B. Biel, F. Triozon, X. Blase, S. Roche, Nano Lett. 9, 2725 (2009)

    Article  ADS  Google Scholar 

  41. Huaixiu Zheng, Walter Duley, Phys. Rev. B 78, 155118 (2008)

    Article  Google Scholar 

  42. S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, Carbon 46, 537 (2008)

    Article  Google Scholar 

  43. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  44. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  46. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1993)

    Article  ADS  Google Scholar 

  47. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  48. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005)

  49. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  50. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  51. H. Zeng, J.-P. Leburton, Y. Xu, J.-W. Wei, Defect Symmetry Influence on Electronic Transport of Zigzag Nanoribbons, Nanoscale Res. Lett. (in press)

  52. D.E. Jiang, B.G. Sumpter, S. Dai, J. Chem. Phys. 126, 134701 (2007)

    Article  ADS  Google Scholar 

  53. D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007)

    Article  ADS  Google Scholar 

  54. Zuanyi Li, Haiyun Qian, Jian Wu, Bing-Lin Gu, Wenhui Duan, Phys. Rev. Lett. 100, 206802 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Zhao, J., Wei, J. et al. Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons. Eur. Phys. J. B 79, 335–340 (2011). https://doi.org/10.1140/epjb/e2010-10725-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10725-4

Keywords

Navigation