Advertisement

The European Physical Journal B

, Volume 77, Issue 1, pp 147–152 | Cite as

Emergence of semi-localized Anderson modes in a disordered photonic crystal as a result of overlap probability*

  • A. R. Hashemi
  • M. Hosseini-Farzad
  • Afshin Montakhab
Mesoscopic and Nanoscale Systems

Abstract

In this paper we study the effect of positional randomness on transmissional properties of a two dimensional photonic crystal as a function of a randomness parameter α (α = 0 completely ordered, α = 1 completely disordered). We use finite-difference time-domain (FDTD) method to solve the Maxwell’s equations in such a medium numerically. We consider two situations: first a 90° bent photonic crystal wave-guide and second a centrally pulsed photonic crystal micro-cavity. We plot various figures for each case which characterize the effect of randomness quantitatively. More specifically, in the wave-guide situation, we show that the general shape of the normalized total output energy is a Gaussian function of randomness with wavelength-dependent width. For centrally pulsed PC, the output energy curves display extremum behavior both as a function of time as well as randomness. We explain these effects in terms of two distinct but simultaneous effects which emerge with increasing randomness, namely the creation of semi-localized modes and the shrinking (and eventual destruction) of the photonic band-gaps. Semi-localized (i.e. Anderson localized) modes are seen to arise as a synchronization of internal modes within a cluster of randomly positioned dielectric nano-particles. The general trend we observe shows a sharp change of behavior in the intermediate randomness regime (i.e. α 0.5) which we attribute to a similar behavior in the underlying overlap probability of nano-particles.

Keywords

Photonic Crystal Output Energy Randomness Factor FDTD Method Random Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    J.D. Joannopoulos, S.G. Johnson, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008) Google Scholar
  2. 2.
    J.M. Lourtioz, H. Benisty, V. Berger, J.M. Gérard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005) Google Scholar
  3. 3.
    R.H. Lipson, C. Lu, Eur. J. Phys. 30, S33 (2009) CrossRefGoogle Scholar
  4. 4.
    M.R. Singh, Phys. Lett. A 372, 5083 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.R. Singh, Opt. Lett. 34, 2909 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    S.Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, Science 282, 274 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    T.N. Langtry, A.A. Asatryan, L.C. Botten, C.M. de Sterke, R.C. McPhedran, P.A. Robinson, Phys. Rev. E 68, 026611 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    K.C. Kwan, X. Zhang, Z.Q. Zhang, C.T. Chan, Appl. Phys. Lett. 82, 4414 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, 2005) Google Scholar
  11. 11.
    J. Schneider, C. Wagner, O. Ramahi, IEEE Trans. Antennas Propag. 46, 1159 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    A. Rodriguez, M. Ibanescu, J.D. Joannopoulos, S.G. Johnson, Opt. Lett. 30, 3192 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    R. Meisels, F. Kuchar, J. Opt. A: Pure Appl. Opt. 9, S396 (2007) CrossRefGoogle Scholar
  14. 14.
    Z. Zhu, W. Ye, J. Ji, X. Yuan, C. Zen, Appl. Phys. B: Lasers Opt. 88, 231 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    C.J. Matthews, R. Seviour, Appl. Phys. B: Lasers Opt. 94, 381 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    D. Laurent, O. Legrand, P. Sebbah, C. Vanneste, F. Mortessagne, Phys. Rev. Lett. 99, 253902 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M.M. Sigalas, C.M. Soukoulis, C.T. Chan, D. Turner, Phys. Rev. B 53, 8340 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, C.M. Soukoulis, Phys. Rev. B 64, 195113 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Sigalas, C.M. Soukoulis, C.T. Chan, R. Biswas, K.M. Ho, Phys. Rev. B 59, 12767 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    E. Lidorikis, M.M. Sigalas, E.N. Economou, C.M. Soukoulis, Phys. Rev. B 61, 13458 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    H.Y. Ryu, J.K. Hwang, Y.H. Lee, Phys. Rev. B 59, 5463 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    E. Özbay, G. Tuttle, M. Sigalas, C.M. Soukoulis, K.M. Ho, Phys. Rev. B 51, 13961 (1995) ADSCrossRefGoogle Scholar
  23. 23.
    H. Li, B. Cheng, D. Zhang, Phys. Rev. B 56, 10734 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    W.R. Frei, H.T. Johnson, Phys. Rev. B 70, 165116 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    Some authors prefer to call these Anderson localized modes in analogy with Anderson localization in condensed matter physics, see for example A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Phys. Today 62, 24 (2009) CrossRefGoogle Scholar
  26. 26.
    A.A. Lichmanov, C.M. Briskina, V.M. Markushev, V.N. Lichmanova, N.P. Soshchin, J. Appl. Spectrosc. 65, 818 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    C.M. Briskina, L.E. Li, Laser Phys. 12, 724 (2002) Google Scholar
  28. 28.
    V.M. Markushev, N.E. Ter-Gabrielyan, C.M. Briskina, V.R. Belan, V.F. Zolin, Sov. J. Quantum Electron. 20, 773 (1990) ADSCrossRefGoogle Scholar
  29. 29.
    C.M. Briskina, V.M. Markushev, N.E. Ter-Gabrielyan, Quantum Electron. 26, 923 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    J. Topolancik, B. Ilic, F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    C. Vanneste, P. Sebbah, Phys. Rev. E 71, 026612 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    T.N. Langtry, L.C. Botten, A.A. Asatryan, M.A. Byrne, A. Bourgeois, in Proc. of 11th Computational Techniques and Applications Conference CTAC-2003, edited by J. Crawford, A.J. Roberts (2004), Vol. 45, pp. C744–C758, http://anziamj.austms.org.au/V45/CTAC2003/Lang/home.html
  34. 34.
    J.A. Roden, S.D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000) CrossRefGoogle Scholar
  35. 35.
    P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd edn. (Springer, 2006) Google Scholar
  36. 36.
    C. Vanneste, P. Sebbah, Phys. Rev. Lett. 87, 183903 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    A. Yamilov, H. Cao, Phys. Rev. A 69, 031803 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. R. Hashemi
    • 1
  • M. Hosseini-Farzad
    • 1
  • Afshin Montakhab
    • 1
  1. 1.Department of PhysicsCollege of Sciences, Shiraz UniversityShirazIran

Personalised recommendations