Skip to main content
Log in

Emergence of semi-localized Anderson modes in a disordered photonic crystal as a result of overlap probability*

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we study the effect of positional randomness on transmissional properties of a two dimensional photonic crystal as a function of a randomness parameter α (α = 0 completely ordered, α = 1 completely disordered). We use finite-difference time-domain (FDTD) method to solve the Maxwell’s equations in such a medium numerically. We consider two situations: first a 90° bent photonic crystal wave-guide and second a centrally pulsed photonic crystal micro-cavity. We plot various figures for each case which characterize the effect of randomness quantitatively. More specifically, in the wave-guide situation, we show that the general shape of the normalized total output energy is a Gaussian function of randomness with wavelength-dependent width. For centrally pulsed PC, the output energy curves display extremum behavior both as a function of time as well as randomness. We explain these effects in terms of two distinct but simultaneous effects which emerge with increasing randomness, namely the creation of semi-localized modes and the shrinking (and eventual destruction) of the photonic band-gaps. Semi-localized (i.e. Anderson localized) modes are seen to arise as a synchronization of internal modes within a cluster of randomly positioned dielectric nano-particles. The general trend we observe shows a sharp change of behavior in the intermediate randomness regime (i.e. α 0.5) which we attribute to a similar behavior in the underlying overlap probability of nano-particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008)

  2. J.M. Lourtioz, H. Benisty, V. Berger, J.M. Gérard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005)

  3. R.H. Lipson, C. Lu, Eur. J. Phys. 30, S33 (2009)

    Article  Google Scholar 

  4. M.R. Singh, Phys. Lett. A 372, 5083 (2008)

    Article  ADS  Google Scholar 

  5. M.R. Singh, Opt. Lett. 34, 2909 (2009)

    Article  ADS  Google Scholar 

  6. S.Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, Science 282, 274 (1998)

    Article  ADS  Google Scholar 

  7. A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996)

    Article  ADS  Google Scholar 

  8. T.N. Langtry, A.A. Asatryan, L.C. Botten, C.M. de Sterke, R.C. McPhedran, P.A. Robinson, Phys. Rev. E 68, 026611 (2003)

    Article  ADS  Google Scholar 

  9. K.C. Kwan, X. Zhang, Z.Q. Zhang, C.T. Chan, Appl. Phys. Lett. 82, 4414 (2003)

    Article  ADS  Google Scholar 

  10. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, 2005)

  11. J. Schneider, C. Wagner, O. Ramahi, IEEE Trans. Antennas Propag. 46, 1159 (1998)

    Article  ADS  Google Scholar 

  12. A. Rodriguez, M. Ibanescu, J.D. Joannopoulos, S.G. Johnson, Opt. Lett. 30, 3192 (2005)

    Article  ADS  Google Scholar 

  13. R. Meisels, F. Kuchar, J. Opt. A: Pure Appl. Opt. 9, S396 (2007)

    Article  Google Scholar 

  14. Z. Zhu, W. Ye, J. Ji, X. Yuan, C. Zen, Appl. Phys. B: Lasers Opt. 88, 231 (2007)

    Article  ADS  Google Scholar 

  15. C.J. Matthews, R. Seviour, Appl. Phys. B: Lasers Opt. 94, 381 (2009)

    Article  ADS  Google Scholar 

  16. D. Laurent, O. Legrand, P. Sebbah, C. Vanneste, F. Mortessagne, Phys. Rev. Lett. 99, 253902 (2007)

    Article  ADS  Google Scholar 

  17. M.M. Sigalas, C.M. Soukoulis, C.T. Chan, D. Turner, Phys. Rev. B 53, 8340 (1996)

    Article  ADS  Google Scholar 

  18. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, C.M. Soukoulis, Phys. Rev. B 64, 195113 (2001)

    Article  ADS  Google Scholar 

  19. M.M. Sigalas, C.M. Soukoulis, C.T. Chan, R. Biswas, K.M. Ho, Phys. Rev. B 59, 12767 (1999)

    Article  ADS  Google Scholar 

  20. E. Lidorikis, M.M. Sigalas, E.N. Economou, C.M. Soukoulis, Phys. Rev. B 61, 13458 (2000)

    Article  ADS  Google Scholar 

  21. H.Y. Ryu, J.K. Hwang, Y.H. Lee, Phys. Rev. B 59, 5463 (1999)

    Article  ADS  Google Scholar 

  22. E. Özbay, G. Tuttle, M. Sigalas, C.M. Soukoulis, K.M. Ho, Phys. Rev. B 51, 13961 (1995)

    Article  ADS  Google Scholar 

  23. H. Li, B. Cheng, D. Zhang, Phys. Rev. B 56, 10734 (1997)

    Article  ADS  Google Scholar 

  24. W.R. Frei, H.T. Johnson, Phys. Rev. B 70, 165116 (2004)

    Article  ADS  Google Scholar 

  25. Some authors prefer to call these Anderson localized modes in analogy with Anderson localization in condensed matter physics, see for example A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Phys. Today 62, 24 (2009)

    Article  Google Scholar 

  26. A.A. Lichmanov, C.M. Briskina, V.M. Markushev, V.N. Lichmanova, N.P. Soshchin, J. Appl. Spectrosc. 65, 818 (1998)

    Article  ADS  Google Scholar 

  27. C.M. Briskina, L.E. Li, Laser Phys. 12, 724 (2002)

    Google Scholar 

  28. V.M. Markushev, N.E. Ter-Gabrielyan, C.M. Briskina, V.R. Belan, V.F. Zolin, Sov. J. Quantum Electron. 20, 773 (1990)

    Article  ADS  Google Scholar 

  29. C.M. Briskina, V.M. Markushev, N.E. Ter-Gabrielyan, Quantum Electron. 26, 923 (1996)

    Article  ADS  Google Scholar 

  30. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    Article  ADS  Google Scholar 

  31. J. Topolancik, B. Ilic, F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007)

    Article  ADS  Google Scholar 

  32. C. Vanneste, P. Sebbah, Phys. Rev. E 71, 026612 (2005)

    Article  ADS  Google Scholar 

  33. T.N. Langtry, L.C. Botten, A.A. Asatryan, M.A. Byrne, A. Bourgeois, in Proc. of 11th Computational Techniques and Applications Conference CTAC-2003, edited by J. Crawford, A.J. Roberts (2004), Vol. 45, pp. C744–C758, http://anziamj.austms.org.au/V45/CTAC2003/Lang/home.html

  34. J.A. Roden, S.D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000)

    Article  Google Scholar 

  35. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd edn. (Springer, 2006)

  36. C. Vanneste, P. Sebbah, Phys. Rev. Lett. 87, 183903 (2001)

    Article  ADS  Google Scholar 

  37. A. Yamilov, H. Cao, Phys. Rev. A 69, 031803 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Montakhab.

Electronic supplementary material

Supplementary data

MOV file

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, A., Hosseini-Farzad, M. & Montakhab, A. Emergence of semi-localized Anderson modes in a disordered photonic crystal as a result of overlap probability*. Eur. Phys. J. B 77, 147–152 (2010). https://doi.org/10.1140/epjb/e2010-00250-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00250-y

Keywords

Navigation